

Raman and IR spectroscopy in materials science. Symmetry analysis of normal phonon modes

Boriana Mihailova

CrystallographyOnline: InternationalSchoolon theUseandApplications of theBilbao Crystallographic Server

1. The dynamics of atoms in crystals. Phonons

2. Raman and IR spectroscopy :

most commonly used methods to study atomic dynamics

3. Group theory analysis :

phonon modes allowed to be observed in IR and Raman spectra

🖉 Bilbao Crystallographic Server - Windows Inter	net Explorer				- 7
COO - Ittp://www.cryst.ehu.es/				🖅 🗙 🚼 Google	
<u>File E</u> dit <u>V</u> iew F <u>a</u> vorites <u>T</u> ools <u>H</u> elp					
x Google bilbao server	🔽 🔧 Search 🔹 🕫 🐔 📲 🕇	🔊 • 😭 Bookmarks•	ABC Check 🔹 🎦 AutoFill 🔹 🌽 💽 bilbao 🔍 server		🔦 • 🔵 Sign In • 🛛 🗙 🛖 •
🖕 Favorites 🛛 🚖 🏉 Suggested Sites 🝷 📶 Free Hotma	il 🤌 Web Slice Gallery 🝷				
🏉 Bilbao Crystallographic Server				🔄 • 🗟 · 🖃 🚔 •	Page 🔹 Safety 🔹 Tools 🔹 🕡 👻 🎽
symmetry Space Group basis.					<u>^</u>
NORMALIZER	Solid State Theory Ap	plications			
9-2007: Added specialized metrics	SAM	Spectral A	Active Modes (IR and RAMAN Selection R	ules)	
Euclidean normalizers.	NEUTON	Neutron S	cattering Selection Rules		
AMPLIMODES	SYMMODIS	Primary a	nd Secondary Modes for a Group - Subgr	oup pair	
2-2008: Symmetry Mode Analysis of	AMPLIMODES	Symmetry	Mode Analysis		
Structural Phase Transitions.	PSEUDO	Pseudosy	mmetry Search in a Structure		
CELLSUPER	DOPE	Degree of	f Pseudosymmetry Estimation		

Visualization: UNISOFT, Prof. G. Eckold et al., University of Göttingen

💯 Unisoft Version 3.05 - [PhononView for KLS]	- 7 🗙
伊 Eile Edit Symmetry analysis Model External modules Window Help	- 8 ×
6 Unisoft Release 3.05 9 Unisoft Release 3.05 9 Elker, G. Eckold 1 H. Gibhardt, G. Eckold (c) 1987 - 2003 (c) 2004 - 2005 1 Tammanstraße 6 37073 Göttingen Germany hgibhar@gwdg.de geckold@gwdg.de 1 DK	
KLiSO ₄ , hexagonal	
Q=(0.000000, 0.000000) 42 modes sel. t: 1518 phi: 0.00 th: 260.00 x: -8.00 y: -3.50 z: -8.40 Unnamed project Please enter crystal structure Intervention Interventinterventintervention Interventintervention	

e.g.,

a mode involving mainly $S-O_t$ bond stretching

a mode involving SO_4 translations and Li motions vs K atoms

Atomic vibrations in a *periodic* solid

£

standing elastic waves = normal modes (ω_{s} , { u_{i} },)

crystals : *N* atoms in the primitive unit cell vibrating in the 3*D* space ⇒ 3N degrees of freedom ⇒ finite number of normal states ⇒ quantization of crystal vibrational energy

N atoms × 3 dimensions ↔ 3*N* phonons

phonon = quantum of crystal vibrational energy

phonons: quasi-particles (elementary excitations in solids)

- $E_n = (n+1/2)\hbar\omega$,
- $m_0 = 0$, $\mathbf{p} = \hbar \mathbf{K}$ (quasi-momentum), $\mathbf{K} \equiv \mathbf{q} \in \mathrm{RL}$
- integer spin

Bose-Einstein statistics: $n(\omega,T)=1/[exp(\hbar\omega/k_BT)-1]$ (equilibrium population of phonons at temperature T)

Atomic bonds \leftrightarrow elastic springs Hooke's low : $m\ddot{x} = -Kx \rightarrow \omega = \sqrt{\frac{K}{m}}$

Equation of motion for a **3D** crystal with N atoms in the primitive unit cell :

 \Rightarrow phonon $\omega_{\rm S}$, $\{\mathbf{u}_i\}_{\rm S} \leftrightarrow$ eigenvalues and eigenvectors of $\mathbf{D} = f(m_i, K(\{\mathbf{r}_i\}), \{\mathbf{r}_i\})$

 \Rightarrow phonon $\omega_{\rm S}$, $\{\mathbf{u}_i\}_{\rm S}$ carry essential structural information !

1 Longitudinal: wave polarization $(\mathbf{u}) \parallel$ wave propagation (\mathbf{q}) **2 Transverse**: wave polarization $(\mathbf{u}) \perp$ wave propagation (\mathbf{q})

Phonon (Raman and IR) spectroscopy

electromagnetic wave as a probe radiation (photon - opt. phonon interaction):

Infrared absorption:
$$\hbar \omega_{photon} = E_{ES}^{(phonon)} - E_{GS}^{(phonon)}$$

 ω, \mathbf{k} excited state
ground state

UH

Raman scattering = inelastic light scattering from optical phonons

• only optical phonons near the FBZ centre are involved $\mathbf{k}_i - \mathbf{k}_s = \mathbf{K} \quad \Rightarrow \quad K_{\max} = \Delta k \approx 2k_i \quad (e.g. Raman, 180^\circ\text{-scattering geometry})$ $\lambda_i (IR, \text{vis}, UV) \sim 10^3 - 10^5 \text{ Å} \Rightarrow k_i \sim 10^{-5} - 10^{-3} \text{ Å} \approx K_{\max} \Rightarrow K_{\max} \ll \frac{\pi}{a} \quad (a \sim 10 \text{ Å})$ $\Rightarrow \text{ photon-phonon interaction only for } K \approx 0$ • spectroscopic units: $\text{cm}^{-1} \Leftrightarrow \text{E} = \hbar \text{ck} = \hbar \text{c}(2\pi/\lambda) = \ln(1/\lambda)$ $10 \text{ [cm}^{-1]} \Leftrightarrow 1.24 \text{ [meV]} \quad 10 \text{ [cm}^{-1]} \Leftrightarrow 0.30 \text{ [THz]} \quad [\text{Å}].[\text{cm}^{-1}] = 10^8$

• IR and Raman spectra are different for the same crystal

different interaction phenomena ⇒ different selection rules !

Raman and IR intensities

IR activity: induced dipole moment due to the change in the atomic positions

 $\boldsymbol{\mu} = (\mu_x, \mu_y, \mu_z)$ $\mu(Q) = \mu_0 + \sum \frac{\partial \mu}{\partial Q_k} Q_k + \dots \qquad Q_k - \text{configurational coordinate}$ $\neq 0, \text{ IR activity}$

IR: "asymmetrical", "one-directional"

Raman activity: induced dipole moment due to deformation of the e⁻ shell

Polarizability tensor: $\boldsymbol{\alpha} = \begin{pmatrix} \alpha_{xx} & \alpha_{xy} & \alpha_{xz} \\ \alpha_{xy} & \alpha_{yy} & \alpha_{yz} \\ \alpha_{xz} & \alpha_{yz} & \alpha_{zz} \end{pmatrix}$ $\boldsymbol{\alpha}(Q) = \boldsymbol{\alpha}_0 + \sum \frac{\partial \boldsymbol{\alpha}}{\partial Q_k} Q_k + \dots$ $\boldsymbol{\alpha}(Q) = \boldsymbol{\alpha}_0 + \sum \frac{\partial \boldsymbol{\alpha}}{\partial Q_k} Q_k + \dots$ (dipole moment per unit cell) \neq 0, Raman activity Raman: "symmetrical", "two-directional"

N.B.! simultaneous IR and Raman activity – only in non-centrosymmetric structures

Three techniques of selection rule determination at the Brillouin zone centre:

• Factor group analysis

the effect of each symmetry operation in the factor group on each type of atom in the unit cell

• Molecular site group analysis

symmetry analysis of the ionic group (molecule) \rightarrow site symmetry of the central atom + factor group symmetry

Nuclear site group analysis

site symmetry analysis is carried out on every atom in the unit cell set of tables ensuring a great ease in selection rule determination preliminary info required: space group and occupied Wyckoff positions

Rousseau, Bauman & Porto, J. Raman Spectrosc. 10, (1981) 253-290

Bilbao Server, SAM, http://www.cryst.ehu.es/rep/sam.html

N.B.! Tabulated information for:

first-order, linear-response, non-resonance interaction processes

(one phonon only) (one photon only)

 $(\hbar \omega_i < E_{\rm ES}^{electron} - E_{\rm GS}^{electron})$

Symbols and notations

Symmetry element	Schönflies notation	International (Hermann-Mauguin)
Identity	Ε	1
Rotation axes	C_n	n = 1, 2, 3, 4, 6
Mirror planes	σ	m
\perp to <i>n</i> -fold axis	σ_h	<i>m</i> , <i>m</i> _z
to <i>n</i> -fold axis	$\sigma_{\!\scriptscriptstyle V}$	m_{ν} ,
bisecting $\angle(2,2)$	$\sigma_{\! d}$	m_d, m'
Inversion	Ι	$\overline{1}$
Rotoinversion axes	S_n	$n = \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{6}$
Translation	t_n	t_n
Screw axes	C_n^k	n_k
Glide planes	σ^{g}	a, b, c, n, d

Point groups:

Triclinic Monoclinic		Trigonal (Rhombohedral)		Tetragonal		Hexagonal		Cubic			
C_1	1	C_2	2	C_3	3	C_4	4	C_6	6	Т	23
C_i	1	C_S	т	C_{3i}	3	S_4	$\overline{4}$	C_{3h}	$\overline{6}$		
		C_{2h}	2/m			C_{4h}	4/m	C_{6h}	6/ <i>m</i>	T_h	$m\overline{3}$
		C_{2v}	mm2	C_{3v}	3 <i>m</i>	C_{4v}	4 <i>mm</i>	C_{6v}	6 <i>mm</i>		
				D_{3d}	$\overline{3}m$	D_{2d}	42 <i>m</i>	D_{3h}	6 <i>m</i> 2	T_d	$\overline{4}3m$
		D_2	222	D_3	32	D_4	422	D_6	622	0	432
		D_{2h}	mmm			D_{4h}	4/mmm	D_{6h}	6/ <i>mmm</i>	O_h	$m\overline{3}m$

 $D_n: E, C_n; nC_2 \perp$ to $C_n; T$: tetrahedral symmetry; O: octahedral (cubic) symmetry

Mulliken symbols

A, B : 1D representations ↔ non-degenerate (single) mode only one set of atom vector displacements (u₁, u₂,...,u_N) for a given wavenumber ω
A: symmetric with respect to the principle rotation axis n (C_n)
B: anti-symmetric with respect to the principle rotation axis n (C_n)
E: 2D representation ↔ doubly degenerate mode two sets of atom vector displacements (u₁, u₂,...,u_N) for a given wavenumber ω
T (F): 3D representation ↔ triply degenerate mode three sets of atom vector displacements (u₁, u₂,...,u_N) for a given wavenumber ω
subscripts g, u (X_g, X_u) : symmetric or anti-symmetric to inversion 1 superscripts '," (X', X") : symmetric or anti-symmetric to a mirror plane m subscripts 1,2 (X₁, X₂) : symmetric or anti-symmetric to add. m or C_n

Bilbao Crystallographic Server, SAM

Working example: CaCO₃, calcite, $\overline{R3}c$ (167) D_{3d}^{6} (0,0,0)+ (2/3,1/3,1/3)+ (1/3,2/3,2/3)+ Ca: (6b) 0 0 0 C : (6a) 0 0 0.25 O : (18e) 0.25682 0 0.25

http://www.cryst.ehu.es/

UН

or google "Bilbao server"

AMPLIMODES for FullProf	Solid State The	ory Applications			
10-2008: Refine your structures with FullProf	SAM	Spectral Active Modes (IR and RAMAN Selection Rules)			
using symmetry modes.	NEUTRON	Neutron Scattering Selection Rules			
TRANSTRU	SYMMODES	Primary and Secondary Modes for a Group - Subgroup pair			
5-2008: Transform structures to lower	AMPLIMODES	Symmetry Mode Analysis			
symmetry Space Group basis.	PSEUDO	Pseudosymmetry Search in a Structure	Ξ		
NORMALIZER	DOPE	Degree of Pseudosymmetry Estimation			
9-2007: Added specialized metrics Fuclidean normalizers	BPLOT	Pseudosymmetry Search with KPLO1			
	IRANPATH	Transition Paths (Group not subgroup relations)			
Bilbao Crystallographic Server \rightarrow IR and Ra	aman Modes	Help			
		IR and Raman Modes			
Symmetry Adapted Modes		Please enter the sequential number of group as given in International			
Given a space group in ITA notation	and selected	Tables for Crystallography. Vol. A or choose it:			
the Wyckoff positions for the atoms	in a structure				
the program calculates the symmetr	y adapted	Select Wyckoff Positions Or input, the			
modes for gamma point and classin	co tront in it.				

Bilbao Crystallographic Server, SAM

Calcite

		CI	heck	WP	Representative
				36f	x,y,z
Ca: (6b) 0 0	0			18e	x,0,1/4
C : (62) 0 0	0.25			18d	1/2,0,0
C = (0a) 0 = 0	0.25			12c	0,0,z
$0 : (18e) \ 0.25682 \ 0$	0.25		✓	6b	0,0,0
			~	6a	0,0,1/4

Mechanical Representation

WP	A_{1g}	A _{1u}	$A_{_{2g}}$	$A_{_{2u}}$	E_{u}	E _g	Modes
18e	1	1	2	2	3	3	Show
6b	-	1	-	1	2	•	Show
6a	-	-	1	1	1	1	Show

Show] option to obtain the symmetry adapted mo

Ca: (6b) : $A_{1u} + A_{2u} + 2E_u \rightarrow acoustic: A_{2u} + E_u$ (*the heaviest atom*) C : (6a) : $A_{2g} + A_{2u} + E_g + E_u$ O : (18a) : $A_{1g} + A_{1u} + 2A_{2g} + 2A_{2u} + 3E_g + 3E_u$ Total: 10A + 10E = 30 \Leftrightarrow 3N = 30 (N = 6:3 + 6:3 + 18:3 = 10) $\Gamma_{opt} = A_{1g}(R) + 2A_{1u}(ina) + 3A_{2g}(ina) + 3A_{2u}(IR) + 4E_g(R) + 5E_u(IR)$

⇒ 5 Raman peaks and 8 IR peaks are expected

$$\Gamma_{Raman-active} = A_{1g} + 4E_{g}$$
$$\Gamma_{IR-active} = 3A_{2u} + 5E_{u}$$

Practical exercise: number of expected Raman and IR peaks of aragonite

CaCO ₃ ,	aragonite,	Pnma	(62)	D_{2h}^{16}
---------------------	------------	------	------	---------------

Ca	•	(4c)	0.24046	0.25	0.4150
С	•	(4c)	0.08518	0.25	0.76211
01	•	(4c)	0.09557	0.25	0.92224
O2	:	(8d)	0.08726	0.47347	0.68065

Solution:

 $\Gamma_{opt} = 9A_{g}(R) + 6A_{u}(ina) + 6B_{1g}(R) + 8B_{1u}(IR) + 9B_{2g}(R) + 5B_{2u}(IR) + 6B_{3g}(R) + 8B_{3u}(IR)$

⇒ 30 Raman peaks and 21 IR peaks are expected

Calcite: $\Gamma_{Raman-active} = A_{1g} + 4E_g$ Aragonite: $\Gamma_{Raman-active} = 9A_g + 6B_{1g} + 9B_{2g} + 6B_{3g}$

22 observed

Perovskite-type structure ABO₃

single perovskite-type

double perovskite-type

chemical 1:1 B-site order

 $A(B',B'')O_3 Pm\overline{3}m$ (221) O_h^1

 $AB_{0.5}^{*}B_{0.5}^{*}O_{3} Fm\overline{3}m (225) O_{h}^{5}$ (0,0,0)+(0,1/2,1/2)+(1/2,0,1/2)+(1/2,1/2,0)+ A : (8c) : 0.25 0.25 0.25 B': (4a) : 0 0 0 B'': (4b) : 0.5 0 0 O : (24e): 0.255 0 0

Bilbao server, SAM

 $A(B',B'')O_3 Pm\overline{3}m (221) O_h^1$ $A: (1b): T_{1u} \longrightarrow \text{acoustic}$ $B: (1a): T_{1u}$ $O: (3d): 2T_{1u} + T_{2u}$ $Total: 5T = 15 \Leftrightarrow 3N (5 \text{ atoms})$ $\Gamma_{opt} = 3T_{1u}(IR) + T_{2u}(ina)$

Mechanical Representation

WP	$A_{_{1g}}$	A _{1u}	$A_{_{2g}}$	A_{2u}	E_{u}	E_{g}	T _{2u}	$T_{_{2g}}$	T _{1u}	T _{1g}	Modes
3d	-	•	•	-	•	•	1	-	2	-	Show
1b	-	•	•	•	•	•	•	-	1	-	Show
1a	-	•	-	-	•	•	-	-	1	-	Show

Note: Click in the [Show] option to obtain the symmetry adapted modes for a given orbit

UH

 $AB'_{0.5}B''_{0.5}O_3 Fm\overline{3}m$ (225) O_h^5

Exercise: determine the atom vector displacements for A_{1g} , E_g , T_{2g} , and add. T_{1u}

$$\begin{array}{rcl} A:&(8c):&T_{1u}+T_{2g} \longrightarrow &T_{1u} \text{ acoustic} \\ B':&(4a):&T_{1u} \\ B'':&(4b):&T_{1u} \\ O:&(24e):&A_{1g}+E_g+T_{1g}+2T_{1u}+T_{2g}+T_{2u} \end{array}$$

Total: $1A+1E+9T = 30 \Leftrightarrow 3N (N=8:4+4:4+4:4+24:4)$

 $\Gamma_{opt} = A_{1g} + E_g + T_{1g}(ina) + 3T_{1u}(IR) + T_{2u}(ina)$

	Mechanical Representation											
WP	A_{1g}	A _{1u}	$A_{_{2g}}$	$A_{_{2u}}$	E_{u}	E _g	T_{2u}	$T_{_{2g}}$	T _{1u}	T _{1g}	Modes	
24e	1	•	-	•	•	1	1	1	2	1	Show	
8c	•	•	-	•	•	•	•	1	1	•	Show	
4b	•	•	•	-	•	•	-	•	1	•	Show	
4a	-	-		-	-	•	-	-	1	-	Show	

Note: Click in the [Show] option to obtain the symmetry adapted modes for a given orbit

Perovskite-type structure *ABO*₃ : ferroelectric phases

Perovskite-type structure *AB*O₃ : ferroelectric phases

Raman scattering

 $I_{\rm Raman} \propto \alpha_{\alpha\beta}^2$

Porto's notation: A(BC)D

A, D - directions of the propagation of incident (\mathbf{k}_i) and scattered (\mathbf{k}_s) light, B, C – directions of the polarization incident (\mathbf{E}_i) and scattered (\mathbf{E}_s) light

back-scattering
$$Y \xrightarrow{k_s} K_i$$

 $geometry$ $Z \xrightarrow{k_s} K_i$
 $(\mathbf{q}_x, 0, 0)$
 $\mathbf{k}_i \stackrel{\mathbf{E}_i \stackrel{\mathbf{E}_s}{\mathbf{E}_s} \stackrel{\mathbf{E}_i \stackrel{\mathbf{E}_s}{\mathbf{E}_s} \stackrel{\mathbf{E}_i \stackrel{\mathbf{E}_s}{\mathbf{E}_s}}{(\mathbf{q}_{xy}, 0)} \stackrel{\mathbf{Q}_{zz}}{(\mathbf{q}_{xy}, 0)} \stackrel{\mathbf{Q}_{zz}}{(\mathbf{Q}_{zz}, 0)} \stackrel{\mathbf{Q}$

Experimental geometry

LO-TO splitting

More peaks than predicted by GTA may be observed (*info is tabulated*) **Cubic systems**: LO-TO splitting of T modes: T(LO) + T(TO) **Non-cubic systems**: {A(LO) ,A(TO)}; {B(LO),B(TO)}; {E(LO),E(TO)} <u>general rule</u>: $\omega(LO) > \omega(TO)$ (*the potential for* LO: U+E; *for* TO: U)

Cubic crystals: LO-TO splitting \Leftrightarrow covalency of atomic bonding $\Delta \omega_{\text{LO-TO}}$: larger in ionic crystals, smaller in covalent crystals

Uniaxial crystals:

if long-range forces dominate :

under certain propagation and polarization conditions \rightarrow **quasi-LO** and **quasi-TO** phonons of **mixed** A-E character

LO-TO splitting: sensitive to local polarization fields induced by point defects

a change in I_{LO}/I_{TO} depending on type and concentration of dopant

different types of atoms in the same crystallogr. position, e.g. $(B'_{1-x}B''_{x})O_{y}$

two-mode behaviour:

- two peaks corresponding to "pure" B'-O and B"-O phonon modes
- intensity ratio I(B'-O)/I(B''-O) depends on x
 - ✓ covalent character of chemical bonding : short correlation length ✓ relatively large difference in f(B'/B''-O) and/or m(B'/B'')

one-mode behaviour:

- one peak corresponding to the mixed B'-O/B"-O phonon mode
- ~ lineal dependence of the peak position ω on dopant concentration x

 \checkmark ionic character of chemical bonding : long correlation length

✓ similarity in $r_i(B'/B'')$, f(B'/B''-O) and m(B'/B'')

intermediate classes of materials:

two-mode over $x \in (0, x_m)$ and one-mode over $x \in (x_m, 1)$

one-mode behaviour

 $PbSc_{0.5}(Ta_{1-x}Nb_{x})_{0.5}O_{3}$

two-mode behaviour

 $\mathsf{Pb}_3[(\mathsf{P}_{1\text{-}x}\mathsf{As}_x)\mathsf{O}_4]_2$

Non-centrosymmetric crystals with compositional disorder

LO-TO splitting + one-mode/two-mode behaviour:

UH

we may observe **four** peaks instead of **one** !

Transformation of polarizability tensors

UH

ñ۲

Group theory: predicts the number of expected IR and Raman peaks one needs to know: crystal space symmetry + occupied Wyckoff positions

Deviations from the predictions of the group-theory analysis:

- Control Selitting if no centre of inversion (info included in the tables)
- 🙂 one-mode two-mode behaviour in solid solutions
- 😳 😳 local structural distortions (length scale ~ 2-3 nm, time scale ~ 10⁻¹² s)
- 🙁 Experimental difficulties (low-intensity peaks, hardly resolved peaks)

What should we do before performing a Raman or IR experiment?

