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Buerger's classification of structural phase transitions

reconstructive: primary (first-coordination) chemical bonds are broken and reconstructed —
discontinuous enthalpy and volume changes — first-order thermodynamic

character (coexistence of phases at equilibrium, hysteresis and metastability)

displacive: secondary (second-coordination) chemical bonds are broken and reconstructed, primary

bonds are not — small or vanishing enthalpy and volume changes —

second-order or weak first-order thermodynamic character

order/disorder: the structural difference is related to different chemical occupation of the same

crystallographic sites, leading to different sets of symmetry operators in the two
phases — vanishing enthalpy and volume changes —

second-order thermodynamic character
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Symmetry aspects of Buerger’s phase transitions

¢ Displacive and second-order phase transitions:

- the space group symmetries of the two phases show a group/subgroup relationship

- the low-symmetry phase approaches the transition to higher symmetry continuously;

- the order parameter n measures the 'distance’ of the low-symmetry to the high-symmetry

(n=0) structure
T-driven transition: usually the symmetry of the 1.t. phase 1s a subgroup of that of the h.t. phase

p-driven transition: it is hard to predict which one of the two phases (l.p. and h.p.) is more

symmetric
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¢ Reconstructive phase transitions:

- the space group symmetries of the two phases are unrelated

- the transition is quite abrupt (no order parameter)

but:
- any kinetic mechanism of the transformation must be based on an intermediate structure whose
space group is subgroup of both space groups of the two end phases
- the intermediate state transforms continuously from one to the other end phase, according to the

change of the 'reaction coordinate'. or kinetic order parameter
9

Examples of simple reconstructive phase transitions:

HCP to BCC, FCC to HCP and BCC to FCC in metals and alloys
rocksalt (Fm3m) to CsCl-type (Pm3m) structure in binary AB systems: C.N. changes from 6 to 8
zincblende (F43m) to rocksalt (Fm3m) structure in binary AB systems: C.N. changes from 4 to 6
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Mechanisms of reconstructive phase transitions and symmetry of the intermediate states

G (S.G. of phase 1) — H (S.G. of intermediate state) — G, (S.G. pf phase 2)

HCGl, HCGQ, GlCZ G2 (1)

Let Ty, T, and T be the translation groups of G;, G, and H, respectively, and T, < T,. Then:

TcT, TcT, (2)

In the simplest case T;=T,, so that G; and G, have the same translation group (i.e., the primitive
unit-cells of phases 1 and 2 have the same volume, except for a minor difference due to the AV jump
of first-order transitions).

The translation group of H may coincide with that of G, and G, (T=T),), but it may also be a
subgroup of it (T < Ty, i.e., the volume of the primitive cell of the intermediate state is an integer

multiple of that of the end phases, called the index ix of the superlattice).
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The index of the superlattice T of T, is equal to the klassen-gleich index of the subgroup H of G,. In

the general case, we have then that:
ik,l :| T1| /1 T| = V/Vl, ika :| T2| /I Tl = V/Vz, hence: ik,l/ik,z = Vz/Vl.
V, V| and V, are the volumes of the primitive unit-cells associated to subgroup H and groups G; and

G,, respectively.

As the volume per formula-unit should be the same 1n all cases, it turns out that:
V/Z(H) = Vl/Z(Gl) = VQ/Z(GQ), 1t follows that: ik,1 = Z(H)/Z(Gl), ik,z = Z(H)/Z(Gz),
ik,l/ik,z = Vz/Vl = Z(Gz)/Z(Gl) (3)

In other words, the ratio of the two k-indexes of the subgroup H is inversely proportional to the ratio

of the corresponding numbers of f.u. in the primitive unit-cell volumes of G, and G,.
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If a conventional centred (non-primitive) unit-cell is used, then the relations V° =V, Z2° = fZ

should be used, where f° is the number of lattice points contained in the conventional cell.

The relation (3) gives the first general constraint on the determination of the common subgroups H.

The second important constraint concerns the atomic displacements during the reconstructive phase

transition:

Atoms must remain in the same types of Wyckoff positions of H along the entire path G; — Go.

If that were not true, then the H symmetry would be broken to allow atoms to change their Wyckoff

positions.

As a consequence, the Wyckoff positions of corresponding atoms in G; and G, must transform into

the same Wyckoft position of the common subgroup H.
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Systematic search for the common subgroups H of the symmetry groups G, and G,:

1) Method of Stokes and Hatch (Phys. Rev. B 65 144114 (2002))

The first step of a systematic search of the possible intermediate states involves the search for all

common superlattices of phases 1 and 2.

Qi Q: QiQ,"

{a;} —— {a}, {a,} —— {a}, {a} > {ay}

Q, and Q, are the transformation matrices from the primitive unit-cells of phases 1 and 2 to the

primitive cell of the intermediate structure. Their components must be integer numbers.

det(Q;) and det(Q,) are the indexes 1y ; and iy, of the intermediate superlattice with respect to the
lattices of phase 1 and 2, respectively. Q;Q,™ is the transformation matrix relating the lattices of the
two end phases, for the transition mechanism considered - Important for a comparison with the

experimental relative crystallographic orientation of the end phases (if available) !
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Search for common superlattices:
all possible combinations of two sets of nine integers, corresponding to the components of the Q,

and Q, matrices, are considered.

Two limiting conditions:
- areasonable limit on the maximum length of the primitive lattice basis vectors of T
- a reasonable limit on the total strain involved in the T; — T, transformation, which can be

calculated from the Q;Q, ™" matrix.

Once the superlattice T is defined, its symmetry point group P has to be found;

Let P, and P, be the point groups of Ty and T, respectively: then P=P; n P,.

P is found simply by selecting the point group operators of G; and G, which, in the reference frame
of T, are represented by matrices with integer components.

The point group P' of H must be a subgroup of P: P' < P.

P' and H are found by selecting, within the symmetry operators of G; and G, only those which are

compatible with P and T.
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2) Program TRANPATH of the Bilbao Crystallographic Package

e A separate search is performed for the subgroups of G; and G,, and the common subgroup types
shared by both symmetry groups are determined (COMMONSUBS module), within the constraint of
a maximum value of the 1 index: 1) < 1, 1k < 1.

For a given common subgroup type H, the lists of all subgroups H;" (p=1,...m) < G, of the first
branch, and of all subgroups H,? (q=1,...n) < G, of the second branch are obtained. The indexes p

and q label different classes of conjugated subgroups; conjugated subgroups of the same class are

completely equivalent and then they are represented by a single member of the class.

e Every H;” or H,? subgroup is associated to a transformation matrix Q relating the basis vectors of
G; to those of the subgroup, according to (a,b,c)y = (a,b,c)gQ. This matrix is by no means unique, of

course, because different basis can be chosen to represent the same lattice.
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e Each pair (H,",H,") defines an independent possible transformation path relating G, and G, with
common subgroup type H. Every path is checked for compatibility of the Wyckoff position splittings
in the two G; — H;" and G, — H,? branches (WYCKSPLIT module). The WP's occupied by a

given atom in G; and G, must give rise to the same WP for that atom in H.

e The lattice strain in the H reference frame is computed for the G; — G, transformation, and its

value 1s compared to a threshold given in input to TRANPATH.

e The coordinates of all independent atoms are computed in the H reference frame for the two G;

and G, end structures. The corresponding atomic shifts are compared to a threshold value given in

input to TRANPATH.
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B3/B1 reconstructive phase transition (cf. Catti, PRL 2001 and PRB 2002)

zincblende (G;= F43m) to rocksalt (G,= Fm3m) structure in ZnS and SiC under pressure

Two examples of maximal common subgroups, giving rise to well-studied transition mechanisms:

H=R3m, Imm?2

F43m (B3) Z=4 M Y%, Y%, % (4c,43m); X 0,0,0 (4a, 43m) a

Fm3m (Bl) Z=4 M Y%, %, % (4b,m3m); X 0,0,0 (4a, m3m) an

Intermediate states:

I-H=R3m /=1 M x,x,x (3a,3m); X 0,0,0 (3a,3m)

order parameter: x(M) (Ya— 12)
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0% % -1 11

F43m — R3m Qi =|%0% Q=] 1-11
a0 I 1-1
[0 % Y
Fm3m — R3m Q:=Q,= % 0%
% 14 0
(100
F43m — Fm3m QQ,y'=1010
100 1
R3m (B3): ar=a/N2, ogr=60° R3m (Bl):  ag=ay/\2, og=60°

II-H=Imm2 Z=2 M 0,'% z— %) 2b,mm2); X 0,0,0 (2a, mm2)

Order parameter: z(M)

o -2 0 1 10
E£3_m — Imm?2 Qi=|% %0 Q'=1-1 10
0 01 0 01
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0 72 » 00 1

Fm3m — Imm?2 Q,=|0-% % Q'=11-10
1 0 0 1 1
-
F43m — Fm3m QQ,' = %n-% Y%
I 1 O
Imm?2 (B3): a=b=a/N2, c=a Imm2 (B1): b=c=ay/N2, a=ay
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Imm?2 and R3m mechanisms of the B3/B1 high-pressure phase
transition
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Imm?2 pathway of the B3/B1 phase transition of ZnS and SiC

B3(F43m) Imm?2 B1(Fm3m)

M. Catti - Lekeitio 2009
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Enthalpy of the intermediate state of SiC along the B3-B1 transformation path vs. order parameter &

at several p values for two different pathways: Imm?2 (closed symbols) and R3m (dashed lines)
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Example: rocksalt (G;= Fm3m) to CsCl-type (G,= Pm3m) structure in NaCl under pressure

Fm3m (Bl) Z=4 M 0,0,0(4a, m3m); X %, %, % (4b, m3m) a

Pm3m (B2) Z-=1 M 0,0,0 (la, m3m); X %, %, % (1b, m3m) ay

Intermediate states:

I-H=Pmmn 7=2 M Va, Va,z (Ya—>> 2) (2a, mm2); X Va4, %, z+ % (34— 0) (2b, mm?2)

100 1 00

Fm3m — Pmmn Q=|0%% Q'=101-1
0-1% Y% 01 1

110 20

Pm3m — Pmmn Q=10 01 Q2‘1= Y5 0-%
1-10 01 0

0 1 1-1

Fm3m — Pm3m QQ,' =% v%-% QQHY' =101 1
Va2 Va 1-11

18
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Pmmn (Bl): a=a, b=c=a/\2;

II1-H=R3m Z=1

Fm3m — R3m

Pm3m — R3m Q,=Q,'=

QQ,'=Q,=

Fm3m — Pm3m

R3m (Bl): ar=a/N2, ogr=60°
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M 0,0,

Q=% 0%

Pmmn (B2): a=b= aH\/Z, C = ay

0(3a,3m); X Y%, %, % (3b, 3m)

0% % 111
Q'=| 1-11
Y % 0 1 1-1
(100
010
1001
0% % 111

720 7% QQH)'=Q =] 1-11

% %0 11-1

R§m (BZ) dr — 4y, OR = 90°
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112 -H=P2,/m /=2
Fm3m — P2;/m
Pm3m — P2;/m, R3m — P2,/m

Fm3m — Pm3m

P2i/m (B1):

P21/m (BZ) a=b= aH\/2,

C=a,

M x l(%)a %9 ZI(O) (269 m)a

R AR
V-1 Y
1 0 0
(1 -1 0]
1 10
001
0% %]
QQ' =% 0%
Y% 0

Q=

Q.=

B =90°

X x(%4), Y4, z(*2)  (2e, m)

00 1
Q'=11-1 0

1 1-1

Y Y 0
Q'=|-%1% 0
00 1

111
QQ)'=| 1-11
1 1-1

a =aN(3/2), b=c=a/2, p=arcos(1/\3)=54.74°;

P2,/m (R3m): a=ag[2(1+cosag)]”?, b=ag[2(1-cosar)]"?, c=ag, B = arcos[cosor/cos(0r/2)]

M. Catti - Lekeitio 2009
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113 - R3m /=4 M; 0,0,0 (3m); M, x,(*2), x1(*2), z;(0) (3m)
X1 x(%2), x2(%2),x2(%2) (Bm); X, x3(0), x3(0), z(*2) (3m)

100
Fm3m — R3m Q;=Q,'=]010
001
-111 0 V2 Y|
Pm3m — R3m, R3m — R3m Q,=| 1-11 Q'=|no0w%
1 1-1 %0
0% -1 1 1]
Fm3m — Pm3m Q' = [nowu Q:Q,HY'=| 1-11
Y 1 0 111

R3m (B1): ag’=a;, or=90°%;
R3m (B2): ap’ = aH\/3, og = arcos(-1/3)=109.47°;

R3m (R3m):  ag’ = ap(3-2cosor)"?, agr = arcos[(2cosog-1)/(3-2cosoR)]
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R3m pathway of the B1/B2 phase transition
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B1(Fm3m) R3m B2(Pm3m)
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Pmmn pathway of the B1/B2 phase transition

B2(Pm3m)

M. Catti - Lekeitio 2009

23



P2,/m pathway of the B1/B2 phase transition
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AH (eV)

00 01 02 03 04 05 06 07 08 09 1.0
g

Enthalpy of the intermediate state of NaCl along the B1-B2 transformation path vs. order parameter

& for three different pathways: rhombohedral R3m, monoclinic P2;/m orthorhombic Pmmn
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Intermediate metastable Cmcm phase along the P2,/m pathway:

T1I-like structure with both Na and CI in seven-fold coordination

M. Catti - Lekeitio 2009
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Na-Cl distance (A)

Na-Cl8 (full diamonds) and Na-Cl17 (full triangles) interatomic distances versus the order parameter
& along the P2,/m pathway; open diamonds indicate the corresponding Na-Cl distance along the

Pmmn path.
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Enthalpy of the intermediate state of NaCl along the B1-B2 transformation path vs. order parameter

& at three p values for two different pathways: P2,/m (closed symbols) and Pmmn (open symbols)
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Multiple reconstructive phase transition of Agl under pressure (cf. Catti, PRB 2005)

zincblende (G,= F43m) to anti-litharge (G,=P4/nmm) to rocksalt (G;= Fm3m) structure

43 Z=4  Ag (4a) 0,0, 0; [ (4c) 4, Y4, Ya; ay

P4/nmm Z7Z=2 Ag (2a) 0,0,0; I (2¢) 0,%,z; originl arr, Ci
Ag (2a) Y, -Ya,z; 1 (2c) VY4, %, z; origin2

Fm3m 7=4 Ag (42)0,0,0; [ (4b) Y, 'a, Vs ay

Transformation pathway within the non-maximal common subgroup Pm (derived from maximal

common subgroup Pmm?2):

Intermediate state:
Pm 7=2 Agl (la) 0,0,0; Ag2 (1b) x(Ag2), Y2, z(Ag2);
I1 (1b) x(I1), 2, z(I1); 12 (la) x(I2),0, z(I2)

Order parameter : z(Ag2) (Y2— 0)

29
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72 - 0 1 10

F43m — Pm Qi=|% %0 Q'=1|-1 10
0 01 0 01
1 00
P4/nmm — Pm Q=010
0 01
(Vs -5 0
F43m — P4/nmm QiQ,'=Qi=|% %0
0 01
(Vs 0 -V 101
Fm3m — Pm Q;=[0 1 0 Qs'=101 0
% 0 Y% 101
1 0 1
P4/nmm — Fm3m  Q,Q;'=Q;'={01 0
-1 01
Pm (zincblende): a=b=al/\/2, c=a Pm (anti-litharge): a=b=ay, c=cy

Pm (rocksalt): a=c= aH/\/Z, b=ay
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Pm monoclinic mechanisms for the zincblende (a) to anti-litharge (d), and anti-litharge (d) to
rocksalt (f) phase transformations of Agl. The pseudo-orthorhombic Bmm?2 intermediate state (c) is
present in both pathways.

31
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0.00

AH/eV
[
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. F-43m ]

B P4/nmm .

-0.10 — <
_015 _I L1 1 | I | | [ | | [ | | I | | I T | ]
0.0 0.5 1.0 1.5 2.0 2.5 3.0

p/GPa

Theoretical enthalpy differences H - H(F43m) plotted vs. pressure for the Agl phases P4/nmm (anti-
litharge, circles), Fm3m (rocksalt, squares), and Bmm?2 (metastable phase, diamonds). Vertical lines

bound the predicted pressure stability fields
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AH (eV)

0.10 —

| Agl  Pm
0.08 ] 1.15 GPa
] O F-43m - P4/nmm
- A Fm-3m - P4/nmm
0.06 —
0.04 —
0.02
000 I I I I | I I I I | I I I I | I I I I | I I I I
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z(Ag2)

AH (eV)

0.10 —

. Agl Pm
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] A Fm-3m - P4/nmm
0.06 — O F-43m - P4/nmm
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0.50 0.60 0.70 0.80 0.90 1.00
z(Ag2)

Theoretical enthalpy difference H(z(Ag2)) - H(zincblende) for the monoclinic Pm intermediate state

of Agl along the zincblende to anti-litharge (open circles), and anti-litharge to rocksalt (full

triangles) phase transitions. Zincblende/anti-litharge (left) and anti-litharge/rocksalt (right)

equilibrium pressures.
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V (A3)

A Agl  Pm
79 | 1.15 GPa

7] O F-43m - P4/nmm
70 N A Fm-3m - P4/nmm
68 —
66 —
64 —
62 —
60 —

[ [ [ [ | [ [ [ [ | [ [ [ [ | [ [ [ [ | [ [ [ [ |
0.50 0.60 0.70 0.80 0.90 1.00
z(Ag2)

Theoretical molecular volume for the monoclinic Pm intermediate state of Agl along the zincblende
to anti-litharge (open circles), and anti-litharge to rocksalt (full triangles) phase transitions at p =

1.15 GPa.
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Cell constants and atomic fractional coordinates of the Pm monoclinic intermediate state of Agl
along the F43m (zinc-blende) to P4/nmm (anti-litharge) phase transformation, optimized for fixed
z(Ag2) order parameter at the equilibrium pressure 1.15 GPa. Coordinates constrained by symmetry:
x(Agl)=y(Agl)=z(Agl)=y(12)=0; y(Ag2)=y(I1)=1/2. The enthalpy values per formula unit, referred
to that of the F43m phase, are also given.

2(Ag2) a/A bAoA Bideg x(Ag2) x(11) z(I1) x(12) =#12) AH/eV
0.5 [4.709 [4.709 [6.660 | 90 0.5 0 025 0.5 0.75 |0

0.55 |4.858 |4.852 |6.228 | 87.39 |0.4171 [0.9585 [0.2706 |0.5114 [0.7673 |0.0383
0.60 [5.005 [4.931 [5.754 | 85.88 [0.3049 [0.9206 |0.2631 [0.5147 [0.7523 [0.0843
0.65 [5.058 [5.055 |5.350 | 87.51 |0.2325 |0.9013 |0.2367 |0.4989 |0.7163 |0.0864
0.70 [5.004 [5.065 |5.283 | 89.95 |0.1892 |0.8947 |0.2355|0.4853 |0.6991 |0.0624
0.75 [4.745 [5.452 [4.796 [100.12 [0.1934 [0.8049 |0.1634 [0.3901 |0.5891 |0.0380
0.80 [4.801 [5.390 [4.787 [100.39 [0.2207 [0.8194 [0.1931 [0.4013 [0.6074 | 0.0347
0.85 [4.864 [5313 |4.808 | 99.99 |0.2536 |0.8385 |0.2213 [0.4149 |0.6286 |0.0385
0.90 [4.750 [5.035 [5.418 | 96.12 [0.3120 [0.8680 |0.2399 [0.4436 |0.6603 |0.0416
0.95 |4.389 [4.662 |6.467 | 91.14 |0.4614 |0.9730 |0.2643 |0.4884 |0.6856 |0.0161
1.00 |4.474 |4.474 [6.610 | 90 0.5 0 0.2885 | 0.5 0.7115 |0

M. Catti - Lekeitio 2009
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Cell constants and atomic fractional coordinates of the Pm monoclinic intermediate state of Agl

along the P4/nmm (anti-litharge) to Fm3m (rock-salt) phase transformation, optimized for fixed

z(Ag2) order parameter at the equilibrium pressure 1.64 GPa. The enthalpy values per formula unit,

referred to that of the P4/nmm phase, are also given.

z(Ag2) al/A b/A c/A B/deg x(Ag2) xd1) zdIl) xI2) =z(I2) AH/eV
1.00 [4.450 |4.450 ]6.500 | 90 0.5 1 0.2938 | 0.5 0.7062 |0

0.95 (4349 14.628 [6.411 91.08 10.4631 |0.9727 |0.2684 | 0.4887 |0.6816 |0.0152
0.90 [4.821 |5.102 |5.085 | 97.11 |0.3087 |0.8688 |0.2467 [0.4427 | 0.6534 |0.0354
0.85 [4.844 5314 4751 |100.18 |0.2536 |0.8377 |0.2233 [0.4157 |0.6266 |0.0254
0.80 [4.773 |5.377 [4.754 |100.43 ]0.2209 |0.8183 |0.1945 |0.4026 | 0.6058 |0.0205
0.75 14.707 |5.439 [4.770 [100.06 |0.1945 0.8028 |0.1641 [0.3921 |0.5876 |0.0241
0.70 |4.558 |5.817 [4.559 | 97.25 ]0.2994 0.8684 |0.1315 |0.4316 |0.5684 |0.0342
0.65 [4.430 |6.081 4354 | 90.60 |[0.4776 [0.9834 |0.1121 /0.4932 10.5380 |0.0224
0.60 [4.380 16.127 4356 | 90.26 |0.4856 [0.9092 |0.0749 [0.4958 1 0.5262 |0.0090
0.55 [4.364 |6.156 [4.356 | 90.09 |0.4890 [0.9905 |0.0407 |0.4965 0.5145 |0.0013
0.50 [4.356 |6.161 4.356 | 90 0.5 1 0 0.5 0.5 0

M. Catti - Lekeitio 2009
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