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1.  Introduction

Many crystalline structures can be considered pseudosymmetric with respect to 

some configuration of higher symmetry. This higher symmetry arrangement may be 

another phase of the compound or can be a virtual reference structure. In the following 

we will call this structure (real or virtual) of higher symmetry, parent structure or parent 

phase. The actual structure can then be qualified as a distorted structure and may be 

described as a parent crystalline structure plus a static symmetry-breaking structural 

distortion [REF1]. A group-subgroup relation necessarily exists between the space 

groups of the parent structure and the distorted one. If the distortion is sufficiently 

small, a thermally driven structural transition to the configuration of higher symmetry 

may take place at higher temperatures [REF2]. Ferroic structures are a particular case of 

this type of distorted structures, with the distorted (ferroic) structure having a lower 

point group than the parent phase [REF3].  Structural distortions can be of displacive 

type or may include some type order-disorder component (symmetry breaking change 

of the occupation probabilities of some atomic sites).  In the present paper, we will only 

consider purely displacive distorted structures, and the term distorted will be used in 

this restricted sense. We will see below however that some simple order-disorder 

distortions can also be included in this displacive formalism.   

Similarly as it happens with dynamic distortions (thermal vibrations), we know 

since the development of Landau  theory [REF4] that the natural language to deal with 

the static frozen distortions present in ferroic structures and distorted structures in 

general, is the one of modes. Modes are collective correlated atomic displacements 

fulfilling certain symmetry properties. Structural distortions in distorted structures can 

be decomposed into contributions from different modes with symmetries given by 

irreducible representations of the parent space group. One can then distinguish primary 

and secondary (induced) distortions with different symmetries, which will have in 

general quite different weights in the structure, and will respond differently to external 

perturbations. In general, the use of symmetry-adapted modes in the description of 

distorted structures introduces a natural physical hierarchy among the structural 

parameters. This can be useful not only for investigating the physical mechanisms that 

stabilize these phases, but also for pure crystallographic purposes. The set of structural 

parameters used in a mode description of a distorted phase will in general be better 

adapted for a controlled refinement of the structure, or for instance for comparative 



studies between different materials.

           Despite its obvious advantages the use of symmetry adapted modes is still scarce 

in crystallographic studies of distorted structures. Examples regularly appear in the 

literature where this approach is applied in a quantitative and systematic form [REF5], 

in the sense of characterizing the different symmetry components present in the 

structure, but the approach still is minoritary. During many years there has been one 

clear reason for that situation, namely, the mode decomposition analysis in non-trivial 

cases required a deep knowledge of group theory and considerable calculation effort for 

each specific case. In the last years, this situation has changed. Free computer programs 

have been developed which allow fast and automatic mode analyses [REF6]. These 

tools have focussed on the calculation of the basis of distortion modes relevant in each 

case.  However, this has been usually done within the setting of the parent structure, 

without using the space group symmetry of the distorted structure in an explicit form. 

This has implied in general a formalism and parameterization quite distant from the 

usual crystallographic description, and probably has hampered its systematic use among 

crystallographers. 

To improve this situation we have recently made available in the Bilbao 

crystallographic server [REF7] a tool (AMPLIMODES) that allows the automatic mode 

decomposition of any pseudosymmetric structure [REF8]. The program provides, apart 

from a basis of symmetry modes, also their amplitudes in the given structure. An 

important feature of the program is that the paramerization of the structural distortion is 

done in a form close to the conventions of crystallography. Modes are given in terms of 

relative displacements for the asymmetric unit of the distorted phase, so that the actual 

atomic positions describing the structure in the conventional approach are readily 

obtained from the listed modes and their amplitudes. By this means we pretend to 

introduce a parameterization that facilitates the switch from the symmetry mode 

approach to the conventional description of a structure, and hopefully will help to 

standardize and generalize its use in crystallographic studies.  

A further step in this direction has been the adaptation of the refinement program 

FullProf [REF9] and of AMPLIMODES for their combined use, so that now FullProf 

can use directly the output of AMPLIMODES and refine distorted structures using as 

refinable parameters the amplitudes of the basis of symmetry modes provided by this 



latter. The potential of the symmetry-mode approach for the determination of 

pseudosymmetric or distorted structures, with the introduction among the structural 

parameters of a strong hierarchy and the reduction of correlations, has recently been 

demonstrated [REF10-Campbell] for a specific case. We hope that this automatic 

combination of the two programs will ease the application of the direct symmetry-mode 

refinement of distorted structures and will extend its use, advancing in the development 

of a standardized  “Mode Crystallography”. 

Within this context, we present in this article a series of illustrative examples of 

the virtues and possibilities of the analysis of distorted structures in terms of symmetry-

adapted modes. All the results presented here have been obtained using the above 

mentioned program, AMPLIMODES. In a subsequent article we will show also with 

some examples the direct application of this approach to the refinement problem using 

Fullprof [REF9].

2. Symmetry-Mode description of distorted structures

We review in this section the basic features of the symmetry-adapted mode 

description of distorted structures. By this means we introduce the notation and 

parameterization employed. In order to simplify the notation, we will avoid when 

possible any explicit indication of the parameters describing the symmetry properties of 

the modes (wave vectors, wave vector stars, etc…). Thus, we reduce the notation to the 

basic features which are really needed in a practical case, assuming that we have some 

computing tool to obtain a basis of symmetry-adapted modes, given in the 

crystallographic format explained below, as is done by AMPLIMODES.

The distortion relating a parent structure with the actual displacively distorted 

structure of lower symmetry can be deconvoluted into two parts: 

i) A set of atomic displacements which may break some translational symmetry but 

keep the metrics of the underlying lattice, so that the basis vectors of the resulting new 

Bravais lattice are exactly given by some integer combination of the primitive unit cell 

basis vectors of the parent structure.

ii) A strain of the lattice mentioned in i)



This separation corresponds to the distinction of the elastic degrees of freedom from the 

internal atomic degrees of freedom in the structure, and is done automatically if the 

atomic displacements and positions are expressed in relative coordinates with respect to 

the cell parameters, as usually done in crystallography. 

In general, for full consistency and formal rigor (orthogonal properties of modes, 

etc…), the mode analysis should be done assuming that the relative coordinates of the 

distorted structure correspond to step i) above, i.e. to a structure with an unstrained 

lattice, so that its unit cell perfectly matches that of the parent structure. The additional 

strain present in the real structure can be added automatically a posteriori, by taking the 

real unit cell, keeping the same relative coordinates.

           Let ro(µ) be the positions of  the atoms µ µ =1,…s)  within an asymmetric unit of 

the parent structure with space group G. The asymmetric unit of the observed distorted 

structure with lower space group H, subgroup of G, will in general have a larger number 

of atoms due to the splitting of the Wyckoff orbits of the higher-symmetry space group 

[REF12]. Its atomic positions can then in general be expressed as

               r(µ,i) = ro(µ,i) + u(µ,i)      (1)

where ro(µ,i) (µ=1,…,s; i=1,…,nµ) are the atomic positions of the parent structure, 

expressed in the setting of the low symmetry space group, with the index i enumerating 

the formally splitted atomic orbits coming from a single Wyckoff orbit in G.

The set of atomic displacements u(µ,i) within an asymmetric unit of the distorted 

structure fully defines the displacive distortion relating both structures. In general, it can 

then be expressed as the sum of the contributions of a basis of symmetry-adapted 

modes:

              u(µ,i) = Σ  Aτ,m ε(τ,m|µ,i)         (2)

The indices τ and m label all possible distinct allowed symmetry-adapted distortion 

modes. τ stands for the possible different mode symmetries, while m (m=1,…nτ) 

enumerates the possible different independent modes of a given symmetry. The 

contribution of each mode is separated into an amplitude Aτ,m  and a set of normalized 

atomic displacements ε within a primitive unit cell, both being real quantities. The 

atomic displacements ε for a given mode ε(τ,m) form its so-called polarization vector, 



that describe its correlated atomic displacements. The set of displacements ε(τ,m|µ,i) 

within the asymmetric unit of the H-structure, i.e. with µ=1,…s , i=1,…nµ , define 

unambiguously the polarization vector of the corresponding symmetry mode (τ,m). The 

displacements of the remaining atoms within the H-unit cell are obtained by the H space 

group operations relating these atoms with those in the asymmetric unit.  By definition, 

all modes in (2) separately maintain at least the symmetry given by the space group H. 

Therefore, the displacement of an atom related by an operation (R|t) of H with atom 

(µ,i) in the asymmetric unit will be given by Rε(τ,m|µ,i). The polarization vector ε(τ,m) 

defines the symmetry-adapted mode τ,m) except for a global amplitude; therefore we 

will use the terms mode and mode polarization vector as essentially synonymous.

We choose the polarization vectors of the modes in (1) normalized within a 

primitive unit cell of the H lattice. 

                              Σ mult(µ,i) |ε(τ,m|µ,i)|2 =1                                (3)

The symmetry relation just mentioned above permits the reduction of the sum in (3) to 

the asymmetric unit by considering the multiplicity mult(µ,i) (the multiplicity within a 

primitive unit cell for the space group H) of the corresponding Wyckoff positions. It is 

important that the normalization in (3) is done with the mode displacements expressed 

in an absolute length scale. In addition, the basis modes introduced in (1) are chosen 

orthogonal, so that their polarization vectors fulfill:

                          Σ mult(µ,i) ε(τ,m|µ,i). ε(τ’,m’|µ i) =δτ,τ’ δm,m’     (4)

This orthogonality is automatically satisfied by modes of different symmetry or irrep, 

while in the case of modes of the same irrep, a systematic orthogonalization procedure 

can be applied. Note that this implies that the set of symmetry adapted modes is in 

general not unique and a certain arbitrary choice must in general be done for any 

practical calculation.  

The set of displacements of each atomic Wyckoff orbit of the parent structure 

form an invariant subspace for all symmetry operations, so that the symmetry adapted 

basis can be chosen considering separate basis modes for each atomic Wyckoff orbit in 

the parent structure, i.e. ε(τ,m|µ,i)=0 for all µ except if µ is a specific atom in the 

asymmetric unit of G. Furthermore, the symmetry constraints of the polarization vector 



of a given mode only depends on the type of Wyckoff orbit, so that the set of 

displacements defining the mode polarization vectors can be chosen identical for all 

orbits of the same type. Hence, in practice, the index m in the mode basis {ε(τ,m)} 

labelling the modes associated with the same irrep, could be decomposed into two 

labels: one giving the atom representative µ of the set of parent-symmetry related atoms 

having displacements for this mode, and an additional index for further enumeration of 

the modes for the same irrep  and the same atoms.  We will maintain however for 

simplicity whenever possible a single label m as a short symbolic notation.

For consistency, the maximum number of modes that can be included in (1) 

coincides with the number of free atomic parameters necessary to describe the H 

structure in a conventional form, i.e. with the number of (H-symmetry allowed) free 

parameters in the set of displacements {u(µ,i)}. Expression (1) is then in fact a change 

of basis in the space of structural parameters describing the structural distortion, i.e. a 

linear transformation between the atomic parameters {u(µ,i)}, that define the atomic 

positions in the H-structure and the amplitudes {Aτ,m} of the chosen basis of symmetry 

adapted modes. It is important to stress that the dimension of these amplitudes Aτ,m is 

length. Therefore, they can be expressed for instance in Angstroms, and the magnitude 

of different distortion modes present in a distorted structure can be directly compared 

even if they represent collective atomic displacements of very different kind. The values 

of the amplitudes Aτ,m can be readily obtained from the set of atomic displacements 

{u(µ,i)}, once the basis of symmetry-adapted modes ε(τ,m) has been chosen, using their 

orhonormality properties, by a simple scalar product of the distortion with each 

normalized mode of the basis:

                                      Aτ,m =   Σ mult(µ,i) ε(τ,m|µ,i).u(µ i)                (5)

The symmetry of the modes ε is characterized by an irreducible representation 

(irrep) of the space group G, defining its transformation properties for the operations of 

the high symmetry group G, plus in general some additional restriction so that the 

distortion mode keeps the observed symmetry H. In general each distortion mode in (1) 

maintains in the structure a symmetry which is intermediate between G and H 

(including H or G themselves). In other words, its isotropy group [REF13] is in general 

a supergroup of H. This implies that the symmetry modes in (1) are restricted to a 

specific subspace within the representation space associated with their irrep. As this 



restriction is always present if we are working with a fixed space group H for the 

distorted phase, the irrep associated to each mode in (1) can be used as a single label for 

describing its symmetry, letting implicit the additional restriction forced by the space 

group H.  

The distortion modes with isotropy group equal to H can be called primary, 

while those with isotropy groups given by subgroups of G which are distinct 

supergroups of H, are usually termed secondary [REF14]. A primary distortion mode is 

sufficient to produce the observed symmetry break between the parent and the observed 

structure, while secondary distortion modes alone would yield a higher symmetry. 

Trivial examples of secondary distortion modes are those that maintain the symmetry of 

the parent structure, i.e. they transform according to the trivial identity irrep. This type 

of secondary symmetry modes always exist except if all the atoms in the parent 

structure are located in special positions with all its coordinates forced to special values.

          The determination of the amplitudes Aτ,m  of  the symmetry-breaking modes does 

not require to know a specific “real” parent structure. Only the amplitudes of modes 

transforming according to the identity irrep, i.e. those that do not break the space group 

and are therefore already allowed in the parent structure, depend of the structure-

dependent atomic coordinates of the parent structure. A change in the atomic 

coordinates that are variable under space group G only introduces additional atomic 

displacements described by modes that transform according to the identity irrep. 

Therefore, the rest of the distortion, namely the symmetry-breaking distortion remains 

unchanged for any values of these variable coordinates. Hence, the calculation of the 

amplitudes Aτ,m of the symmetry breaking distortion modes only requires to know from 

the high symmetry structure the set of atoms in its asymmetric unit, their type of 

Wyckoff orbit, and identify in the actual distorted structure the atoms corresponding to 

these orbits. This identification is necessary for the calculation of the set of 

displacements u(µ i),  and for this purpose a rough approximate guess of the 

crystallographic free coordinates of the atoms in the parent structure is in general 

sufficient.  

         An ambiguity in the results of the mode decomposition happens if the distorted 

phase is polar. The set of atomic displacements relating the parent and the distorted 

structure includes in general a global translation of the crystal that depends on the 



(arbitrary) choice of origin of the polar structure. A convenient origin choice is then the 

one that makes this global translation zero. This would be the choice done in all 

analyses of polar structures discussed in this article.          

It is also very convenient to express the total distortion in terms of the 

different symmetry components, i.e. as combination of global distortion modes for each 

of the allowed irreps:

                                      u(µ,i) = Σ  Aτ  e(τ|µ,i)                (6)

The global amplitudes Aτ are given by (ΣmAτ,m
2)½ , while the corresponding normalized 

polarization vector e(τ) is determined by the actual linear combination of the symmetry 

modes ε(τ,m), with fixed τ, realized in the structure:

  e(τ|µ,i) =  Σm aτ,m ε(τ,m|µ,i)  with    aτm= Aτ,m/ (ΣmAτ,m
2)½                 7 

The distortion mode of symmetry τ present in the structure can therefore be described 

by a global amplitude Aτ and a nτ-dimensional normalized polarization vector with 

components {aτm} in the working basis {ε(τ,m)}. The components {aτm} define the 

direction taken by the observed structure in the nτ-dimensional space of allowed τ-

distortions. The set of components {Aτm} are indeed the components of a nτ dimensional 

vector expressed in an orthonormal basis, and any possible τ distortion of the parent 

structure can be expressed by an amplitude Aτ  and the normalized vector {aτm}. 

While the polarization vectors ε(τ,m) of the symmetry-adapted basis only 

depend on the symmetry properties of the irrep τ and some arbitrary choice done, the 

polarization vectors e(τ) corresponding to the global τ-distortion is specific for each 

concrete structure. We shall call these system-dependent symmetry-adapted global 

distortion modes, present in the distorted structure, irrep distortion modes, or simply 

irrep distortions, to be distinguished from the irrep basis modes. While the amplitudes 

Aτ will vary with external perturbations or with changes of the thermodynamic variables 

of the system, the corresponding polarization vectors e(τ)  are expected to be system 

dependent but rather invariant with respect to external fields, and among isomorphic 

materials.  In many cases they can be related with low-energy static normal modes of 

the system (see section 4), that characterize not only the free-energy minimum realized 

by the observed phase, but also all the low energy arrangements around this minimum 



where the system may move with relatively low energy cost.    

3.  The example of the orthorhombic ferroelectric phase of BaTiO3.

     Barium titanate, one of the most studied ferroelectrics [REF15], is known to have a 

parent phase having Pm-3m symmetry and three consecutive ferroelectric phases of 

different symmetries as temperature is lowered [REF16, REF15]. In particular, it has an 

intermediate orthorhombic phase with space group Amm2 in the temperature interval 

[183K, 273K] [REF16, REF17], which we take here as a first example.

Without including the orthorhombic strain, the space group Amm2 of the 

orthorhombic phase of BaTiO3 is related with the one of its cubic phase by the 

transformation c, a-b, a+b; 0,0,0 (footnote explaining the notation). The reported 

structure (REF18-Kwei et al 1993) of this orthorhombic phase of BaTiO3 is reproduced 

in Table 1 and shown in Figure 1. The maximum atomic displacement in the distortion 

with respect to the cubic perovskite phase is smaller than 0.13 A. The number of 

structural variable parameters in the structure is five, but, as the structure is polar along 

z, only four of them are really independent. Before performing the mode decomposition, 

as discussed in the previous section, we shift the origin of the published Amm2 

structure along the polar direction in order that the atomic displacements relating both 

structures do not include a global translation.  This shift has already been included in 

the structure given in Table 1.  The atomic displacements relating the Amm2 structure 

with the parent perovskite structure are then readily obtained from the comparison of 

the asymmetric unit of the Amm2 structure with the one of the cubic parent phase 

expressed in the same setting, which is also listed in Table 1.

The Amm2 distortion decomposes into two distortion modes of different 

symmetry corresponding to the irreps GM4- and GM5-  [REF19] (T1u and T2u in the 

notation of … .[REF20]) (footnote: in the following the irreps at the Γ point, will be 

labelled with the symbol GM, instead of the greek letter, to simplify the notation and to 

be in accordance with program outputs). Both irreps have Amm2 as isotropy subgroup. 

The space of the GM4- distortion has four dimensions while the GM5- distortion 

subspace is one dimensional. A basis of five symmetry modes ε (as provided by 

AMPLIMODES) is listed in Table 2. The polarization vectors of the GM4- modes for 



Ba and Ti are equal and correspond to z displacements of 1Ǻ, while for the oxygens 

there are two independent GM4- modes that can be chosen as shown in Table 2.  The 

first of these two oxygen modes involves displacements (in Ǻmstrongs) of (0,1/√8, 

1/√8) for O1 and ( 0,0,1/√2) for O2, while for the second one, only O1 in the 

asymmetric unit has a non-zero displacement given by (0,-1/2,1/2). The modes in Table 

2 are expressed in relative units with respect to the unit cell of the reference structure 

for practical purposes.

Using (5) the amplitudes for the 5 modes listed in Table 2 can be calculated. The 

global amplitudes of the GM4- and GM5- distortions result to be 0.165 Ǻ and 0.006 Ǻ, 

respectively. Hence, the distortion GM5- is more than 25 times smaller than the polar 

distortion GM4-. Figure 2(b) depicts the polarization vector of the distortion mode 

GM5-, which is fully determined by symmetry and is listed in Table 2. It is a non polar 

mode, totally alien to the ferroelectric instability. Its much smaller weight in the 

structure is fully consistent with the physical origin of this phase. In fact, the amplitude 

of mode GM5- is so small, that its contribution to the actual values of the atomic 

positions is very close to their standard deviations. 

The extremely small value of the GM5- distortion implies that the structure has 

some “hidden” non-crystallographic approximate correlation among its atomic 

coordinates. This can be clearly seen inspecting in Table 3 the polarization vector of the 

GM4- distortion mode present in the structure. The five non-zero displacement 

components in this table are not independent, they are related by three relations: i) 

absence of global translation, ii) normalization and iii) GM4- symmetry. More 

specifically, the GM4- character of the mode forces the following relation among the 

components of the oxygen displacements: δyO1+ δzO1 - δzO2  = 0.. These three relations 

reduce the number of adjustable free parameters to three, which with the single 

parameter describing the GM5- distortion makes the expected total of 4 degrees of 

freedom in the structure. As the GM5- distortion mode is very small, the GM4- 

symmetry is fulfilled to a good approximation by the total distortion, so that the 

experimental coordinates of the oxygens satisfy yO1+ zO1 - zO2  ≈ 0 (for the reported 

structure yO1+ zO1 - zO2 = 0.0014 0.008). This is an approximate non-trivial non-

crystallographic correlation, which is a direct signature of the physical mechanism 

responsible for the stabilization of this phase, namely the thermal instability of a GM4- 



polar mode.

         The polar GM4- distortion mode present in the Amm2 structure of BaTiO3 is 

depicted in Figure 2(b). Although the distortion associated to this phase is usually 

described as a simple change from the spontaneous polarization (order parameter) from 

the direction (1,0,0) in the tetragonal phase to (1,1,0) in this orthorhombic one [REF21], 

it is remarkable that the scheme of correlated atomic displacements is rather complex, 

and their relation with those associated with the tetragonal ferroelectric phase are not 

obvious. Indeed the GM4- distortion mode shown in Table 3 and Figure 2(b) is closely 

connected with the simple polar distortion along a tetragonal axis present in the 

tetragonal phase.  A quantitative comparison of both distortions can be done if they are 

considered in the common reference of the parent phase.

4. Hierarchy of modes

The large difference in amplitude of the two distortion modes of different 

symmetry present in the Amm2 structure of BaTiO3 is a simple example of a property 

that is expected to happen rather systematically in more complex distorted structures.  If 

a structure is pseudosymmetric, the minimum of the free energy corresponding to this 

phase in the energy map within the configuration space of the system, should be located 

in the proximity of a saddle point corresponding to the higher-symmetry configuration. 

The closeness of both points should allow in general a description of this energy 

minimum by a truncated Taylor expansion around the saddle point associated with the 

high symmetry configuration. This Taylor expansion expressed in terms of the 

amplitudes of normal static distortion modes, i.e. diagonal for the second order terms of 

the expansion, is the starting point of the Landau theory of structural phase transitions 

[REF4]. This topological property of the energy landscape around distorted structures is 

however rather general, and can be used to characterize the structural properties of a 

distorted structure, independently of the existence or not of a phase transition. 

The first terms of a Landau-type expansion around the unstable high-symmetry 

configuration, with space group G and close to the distorted phase, with space group H 

(subgroup of G), can be written as:

                                  E = Eo + Σ βm ρΓ1m + ½  Σ κτ,n (Σjρτn,j
2 ) + ….        (8)



where the mode amplitudes ρτn,j in (8) correspond to all displacive normal modes. 

These are classified according to their irrep τ (of G), a multiplicity label n, and a third 

index j for enumerating the different degenerate modes associated to the same irrep if 

this latter is multidimensional, so that several degenerate  modes (same stiffness 

coefficient κτ,n) exist for the same irrep.  All symmetry breaking modes, i.e. all modes 

not transforming according to the identity representation, do not have linear terms in the 

energy expansion (8)  (the energy of a G configuration is necessarily extremal with 

respect to G-symmetry breaking distortions). The linear terms in (8) are therefore 

reduced to the distortion modes allowed in the space group G, i.e. those transforming 

according to identity irrep Γ1, and therefore allowed to be non-zero in the G 

configuration. 

We choose the normal mode amplitudes ρτn,j in (8) real, and they refer to modes 

that besides being symmetry-adapted, are also eigenmodes of the matrix of second 

derivatives of the free energy with respect to the atomic displacements. We can say that 

within the existing freedom in the choice of a symmetry adapted basis, the set of normal 

modes corresponding to the amplitudes ρτn,j  is a very specific choice that besides being 

a symmetry-adapted, is also a physically-adapted basis. These normal modes 

decompose the space of structural degrees of freedom into collective modes that are 

energetically independent in the harmonic approximation, their stiffness coefficients 

κτ,n,j being a measure of their energy cost. They are eigenmodes of the matrix of atomic 

force constants. To distinguish this privileged basis of symmetry-adapted modes, we 

shall call them eigenmodes.

At least one of the stiffness coefficients κτ,n,j in (8) must be negative to make the 

high-symmetry configuration unstable.  The anharmonic terms of lowest order, 

subsequent to those shown in (8), are then sufficient to explain the off-center minima 

corresponding to the distorted structures. This implies in general that the observed 

structural distortion corresponding to these off-center minima will contain mainly low 

energy eigenmodes. Among them one can distinguish the contribution of primary and 

secondary eigenmodes, but this distinction adds now a physical condition to the 

considerations in section 2, where only symmetry properties were involved. Primary 

eigenmodes are in general those that their condensation is sufficient to explain the 

observed symmetry break between the parent and the observed phase and are 



intrinsically unstable (their stiffness coefficient is negative), while secondary 

eigenmodes are those that are only present as an induced effect. Within this viewpoint, 

primary and secondary eigenmodes can be of the same symmetry, their difference being 

their intrinsic instability or stability.

Secondary eigenmodes, despite having in general positive stiffness coefficients 

and hence being hard modes, appear in the global distortion because they have a 

symmetry allowed anharmonic coupling with the primary ones of type ρsP(n) ρ p1,

…, ρp2), where P(n) is a polynomial term of order n in the amplitudes of the primary 

eigenmodes,  ρp1,…, ρp2. The minimal order n allowed has been called the faintness  

index [REF21-bis] ] of the corresponding secondary mode. Neglecting higher order 

terms, this lowest coupling is sufficient for producing a non-zero amplitude of a 

secondary mode at the energy minimum, if the primary distortions are non-zero:

 ρs ~  (1/κs) P(n) ρ p1,…, ρp2)                                            (9)

All secondary eigenmodes present in the distorted phase of space group H are 

necessarily coupled with the primary ones with terms of this type, i.e. linear in the 

amplitude of the secondary eigenmode. 

Any eigenmode having as isotropy group or invariance group a subgroup of G 

which is a supergroup of H has in fact such coupling terms, and is allowed in the 

distorted phase, in accordance with Von Neumann principle [REF22]. Thus this type of 

coupling is a necessary and sufficient condition for a mode to be present in the distorted 

structure. Within this perspective, the space group symmetry H associated with the 

distorted structure, is just an efficient form of defining and introducing the symmetry 

restrictions that all eigenmodes condensed in the distorted phase should fulfill. The 

eigenmodes {eE(τ,n)} compatible with the symmetry H of the distorted phase can be 

labelled in the same way as we did with a general symmetry adapted basis for an H 

distortion in eq. (2), and we can express them in terms of the chosen symmetry adapted 

basis:

                             eE(τ,n|µ,i) =  Σm b(n)
τ,m ε(τ,m|µ,i)        n=1,…, nτ

or in a shorter vector notation:

                             eE(τ,n) =  Σm b(n)
τ,m ε(τ,m)        n=1,…, nτ                             (10)



or

                             eE(τ,n) =   b(n)
τ,1, b(n)

τ,2,…. , b(n)
τ, nτ)  

 The eigenmodes {eE(τ,n)} can be used as a symmetry and physically adapted basis to 

describe the distortion modes  {e(τ)}(see eq. (6)) present in the distorted structure: 

e(τ) =  Σn aE
τ,n eE(τ,n) (11)

According to the arguments above, if τ is the symmetry of a primary mode, the 

decomposition (11) will be dominated by the unstable primary eigenmodes within the 

set of eigenmodes eE(τ,n) of the same symmetry τ. The rest of hard eigenmodes of the 

same symmetry τ will contribute in general with much smaller amplitudes, described in 

a first approximation by eqs. of type (9). As can be seen in eq. (9) secondary 

eigenmodes with larger stiffness constants are expected to have smaller amplitudes in 

the distortion, although the strength of the coupling with the primary eigenmodes plays 

a role may alter this general trend.

If τ corresponds to a symmetry only associated with secondary eigenmodes, the 

static distortion of this symmetry present in the structure is expected to be much smaller 

than the primary one, because of its typical dependence on a power of the primary mode 

amplitudes. The relative weight of the different eigenmodes of the same symmetry will 

be essentially governed by eq. (9), i.e their relative amplitudes are approximately 

inversely proportional to their stiffness, and proportional to their coupling with the 

primary modes. 

Summarizing, the decomposition of a distorted structure in terms of symmetry 

modes is expected to evidence quite different weights or amplitudes for the different 

irrep distortions present in the structure. Distortion modes that are primary from the 

symmetry viewpoint will have much larger amplitudes and can be identified in a good 

approximation with the mode(s) that is(are) intrinsically energetically unstable and are 

the origin of the observed structure, with small corrections due to presence of frozen 

secondary modes of the same symmetry. In the case of ambiguity with respect to the 

possible irrep associated with the primary distortion, a comparison of their respective 

amplitudes is in most cases sufficient for their identification, and therefore for 

identifying the mechanism underlying the stabilization of the phase.



5. An improper ferroelectric: gadolinium molybdate

       An improper ferroelectric is a ferroelectric phase where its polar distortion 

responsible of the spontaneous polarization is a secondary mode [REF23]. The 

symmetry of an improper ferroelectric cannot therefore be explained by the presence of 

a polar distortion. This latter is usually not intrinsically unstable in the parent 

paraelectric phase and its appearance in the distorted phase is induced by its coupling 

with a primary unstable non-polar distortion mode. The spontaneous electric 

polarization in these materials is usually very small, compared with those in proper 

ferroelectrics, as expected from the secondary role of the polar mode in the stabilization 

of the phase. 

         Gd2(MoO4)2  is a well known improper ferroelectric [REF24,REF25]. Its 

ferroelectric phase (see Figure 3) has space group Pba2, with a duplication of the unit 

cell (transformation  a-b, a+b, c; 0, ½, 0) with respect to its parent structure of 

symmetry P-421m, which is stable above 160 C. The maximum atomic displacement in 

the displacive distortion is of the order of 0.4 A. Figure 4 shows the graph of maximal 

subgroups relating the space groups of both phases, with indication of possible irrep 

distortion of P-421m yielding these symmetries. As shown in the graph, we must expect 

in the Pba2 phase three distortion modes. A primary one yields directly the observed 

symmetry and corresponds to the (physically irreducible [REF26]) irrep M2+M4, 

associated with the point M (1/2,1/2,0) at the border of the Brillouin zone. A second 

mode at the centre of the Brillouin zone with symmetry given by irrep GM3, only 

breaking the symmetry up to the intermediate subgroup Cmm2, is also symmetry 

allowed and will also be present as a secondary distortion mode. This second mode is 

polar and should be responsible for the spontaneous polarization of the Pba2 phase. 

Finally, there can also be a fully symmetric GM1 distortion keeping the parent 

symmetry. The number of independent symmetry modes corresponding to these 

symmetries is 22 and 15, for the M2+M4, GM 3 subspaces respectively, while the 

subspace of  GM1 distortions has 14 dimensions, in accordance with the number of free 

atomic parameters already present in the parent P-421m structure.  In other words, the 

determination of the M2+M4, GM3 and GM1 stortions requires 22, 15, and 14 

parameters, respectively, so that their total number is 51, in accordance with the number 



of free parameters in a conventional description of the Pba2 structure (REF25). 

A summary of the mode decomposition of the Pba2 experimental structure 

reported in (REF25) is given in Table 4. Again here the primary distortion is dominant, 

its amplitude being more than one order of magnitude larger than the secondary 

distortion GM3. In a very good approximation the structure can be described 

considering only the M2+M4 and the GM1 distortions, i.e. with a significant decrease 

of 30% in the number of positional parameters compared with a conventional 

description.

Tables S1 to S4 in the supplementary material (footnote : supplementary 

material….) completes the mode description of the Pba2 structure of GdMoO in a form 

following crystallographic conventions. The Table lists a Pba2 asymmetric unit, with 

the atomic positions corresponding to the reference parent phase of higher symmetry 

[REF25]. For this asymmetric unit, Tables S2, S3 and S4 list the atomic displacements 

in relative coordinates defining the normalized polarization vectors of the GM1, 

M2+M4 and GM3 distortion modes present in the structure. This information together 

with the mode amplitudes in Table 4 is sufficient for obtaining, just by adding up the 

three sets of displacements, the atomic coordinates of the asymmetric unit, that define 

the  observed Pba2 structure in a conventional form. Put in this form, these tables give 

also information of the pattern of correlated atomic displacements associated with the 

modes of different symmetry intervening in the distortion. One can see in Table S3 that 

the mode GM3 involves mainly atomic displacements on the plane xy, while the 

displacements along z, which are the only ones with polar character, are typically one 

order of magnitude smaller. In fact, considering the very small amplitude of this GM3 

distortion, its z displacements, except in the case of the Mo atoms, are practically zero 

within their experimental error. Jeitschko (REF25) already pointed out that the 

estimated value of the spontaneous polarization in this structure considering nominal 

charges was smaller than its standard deviation. 

The fact that the GM3 atomic displacements along z are practically negligible 

does not mean however that the atoms remain static along this direction. They displace 

indeed along this direction, but following essentially the symmetry pattern 

corresponding to the mode M2+M4, as shown in Table S2. This means that the total 

structure has some approximate hidden non-crystallographic atomic correlations which 



are satisfied within experimental resolution, similarly as it happens in the orthorhombic 

phase of BaTiO3 discussed in section 3.

6. Domains and equivalent structures. 

It is well known from domain theory [REF 54] that, for a given distorted 

structure with symmetry H <G, there is a series of equivalent structures, which are 

distinguishable when refered to the common reference parent structure, i.e. the so-called 

domains, variants or twin-related structures. 

If the left coset decomposition of H with respect to H is given by:

         G= H +g2H + … gnH                              (12)

with n being the index of the subgroup H, the application of the coset representatives 1, 

g2,…gn on the distorted structure H produces n equivalent structures associated with 

the expected n distinct domain configurations. The space group symmetry of these n 

equivalent structures are given by the space groups Hn, equivalent to H, given by 

gnHgn-1. Within the picture of the configuration energy map discussed in section --, it 

means that there are n equivalent energy minima around the saddle point associated 

with the parent phase, giving place to the multistability or degeneracy of the distorted 

phase, with the possibility of switching processes through external fields between the 

different equivalent energy minima.

The mode decomposition as formalized in the previous sections is restricted to a 

specific orientation (and origin shift) between the subgroup H and G, given by the 

transformation matrix (P,p) relating the two space groups. Hence the details of the 

decomposition refer to a specific subset of configurations among the domain-like 

equivalent ones mentioned above. This means that among the possible equivalent 

orientations and origin relations between the low and high symmetry structures a choice 

must be done, and the concrete expressions for the polarization vectors of the irreps 

distortions will depend on it. The amplitudes of the irrep distortions are however 

independent of the choice of subgroup H, among the equivalent ones. 

 In many cases some coset representatives gn , are such that 



                                          gnHgn-1 = H                           (13)

so that the symmetry of the corresponding domain equivalent configuration is described 

by the same space group H.  In these cases, the mode decomposition of this equivalent 

configuration may yield a change of sign of some of the distortion amplitudes, or 

equivalently a change of sign of the corresponding normalized polarization vectors. 

In general, if a distorted structure is described by a set of irrep distortions with 

amplitudes {At1, At2, …Atp} , and gn is a coset representative in (12) such that eq. 

(13) is satisfied without any change of orientation of the space group H, then an 

equivalent domain-related structure is obtained considering the same polarization 

vectors for the irrep distortions and the transformed amplitudes through the action of the 

space group operation, i.e. {t1(gn)At1, t2(gn)At2, …,tp(gn)Atp},  where t1(gn) is 

necessarily +1 or -1 according to the tranformation properties of each amplitude given 

by the corresponding irrep. The value of +1 or -1 of the factors ti(gn) are in general 

correlated. Those of the secondary modes can be directly derived from those of the 

primary modes through the relation (9) connecting the amplitudes of the secondary 

distortions to the primary ones.  This equation considers the lowest coupling terms 

among primary and secondary distortions, but the resulting sign correlation is a 

symmetry property that is maintained at any level of approximation.

  If the distorted structure contains a single primary distortion, the mode decomposition 

of the domain related configuration will yield a primary distortion with opposite sign, 

while secondary distortions will change sign or not depending on their faintness index 

(see section --)  being odd or even. If, on the contrary, there are several primary 

distortions (with different irreps) in the structure, in most cases more than two domain 

equivalent configurations for the same fixed subgroup H will exist (i.e. more than one 

coset representative gn will fulfill eq. (13)), and the different domains will be 

distinguished by independent uncorrelated changes of sign of the different primary 

distortions, while secondary distortions will have their signs correlated to those of the 

primary ones according to eq. (9) (footnote: in some cases the action of all “lost” 

symmetry operations, gn , on a given primary irrep distortion cannot be reduced to a 

factor +1 and -1, and in these cases, the distortion will have a fixed sign in all domains 

with the same H).

The subset of equivalent domain configurations corresponding to a fixed H <G 



and obtained by the allowed changes of sign of the primary distortions (and correlated 

ones of the secondary ones) correspond to different equivalent crystallographic 

descriptions of the same structure, obtained by means of transformations belonging to 

the euclidean normalizer of the group H extended to the specialized metric that the 

unstrained lattice obtained by the transformation of the lattice of the supergroup G may 

have (REF 26-bis).

We can consider the two structures discussed above as simple examples of the 

above considerations. In the case of the Amm2 phase of BaTiO3, there are 12 

equivalent distorted structures of this symmetry with respect to the Pm-3m perfect 

perovskite. They correspond to the 6 different distinct subgroups Amm2 of Pm-3m 

belonging to the same conjugacy equivalence class, and associated with 6 different 

orientations of the rotational operations of the group Amm2 with respect to the Pm-3m 

setting. Once chosen one of these subgroups by means of the transformation c, a-b, a+b; 

0,0,0, the distorted structure can have two equivalent configurations related by the lost 

inversion operation, which can be taken as the coset representative fulfilling eq. (13). 

The inversion operation changes the sign of both the primary polar distortion of 

symmetry GM4- and the secondary one GM5-.  Hence the two equivalent structures can 

be described by opposite amplitudes (AGM4-, AGM5-) and (-AGM4-, -AGM5-), while 

maintaining the polarization vectors.  As in a mode decomposition the amplitudes are 

usually chosen positive by definition, the change of sign will be reflected in the 

polarization vectors considered, which would be opposite in both configurations. The 

correlated switch of the sign of both distortions is consistent the faintness index of the 

GM5- distortion, which is 3, as can be easily checked using the program INVARIANTS 

of the package ISOTROPY (REF). Hence, in the lowest order, the amplitude AGM5- is 

proportional to AGM4-^3. Note that this means that although an external electric field 

only couples linearly with the polar distortion mode GM4-, it can not only switch this 

primary , but also the secondary non-polar one GM5- through the anharmonic coupling 

among the two distortions. 

In the second example, gadolinium molybdate, the index of the subgroup is 4, 

and we can chose as coset representatives the following operations (1|0 0 0 ), (-4| 0 0 0), 

(1|1 0 0), (-4|1 0 0) . The rotoinversion operation -4 changes the orientation of the Pba2 

space group, and corresponds to another choice of the transformation matrix (P,p). On 

the other hand, the lost translation (1|1 0 0) transforms the distorted structure into its 



so-called antiphase domain. This translational operation only changes the sign of the 

primary mode, while keeping the signs of the two secondary distortions GM4 and GM1. 

Thus, once fixed the transformation (P,p) relating both structures, and maintaining the 

same polarization vectors,  the two alternative domains for this compound correspond to 

the distortion amplitudes (AM2M4, AGM4, AGM1) and  (-AM2M4, AGM4, AGM1). 

These correspond to two equivalent structures related by the operation of euclidean 

normalizer of Pba2,  (1|1/2,1/2,0). Therefore the amplitude of the primary distortion can 

have any sign, while the sense of the secondary polar mode GM4, and hence of the 

spontaneous polarization is fixed. This latter can however be switched by means of an 

electric field, but this corresponds to the action of the coset representative (-4|0 0 0), and 

therefore also implies a tranformation of the polarization vector corresponding the 

primary distortion M2M4 according to the action of the point group operation -4, not 

being reducible to a mere change of sign. This means that the reversal of the 

spontaneous polarization along the pseudotetragonal z-axis through the action of an 

electric field will be accompanied by the tranformation by the operation -4 of the non-

polar M2M4 atomic displacements described in Table S2, which are mostly on the plane 

xy.

Below we will show further examples where two primary distortion modes are 

active and the set of variant or domains through correlated changes of the distortion 

amplitudes is more varied.

7.  A strongly distorted ferroelastic: Leucite.  

          We consider now the structure of leucite. This mineral, with formula KAlSi2O6, is 

tetragonal  (I41/a) at room temperature, but becomes cubic (Ia-3d) above approximately 

940 K (see REF27 and references therein). An intermediate phase in a very narrow 

temperature interval with space group I41/acd has also been reported [REF 28,27]. 

There is a group-subgroup relation between the room temperature I41/a and the high-

temperature symmetry Ia-3d, but as can be seen in Figure 5 the displacive distortion 

relating both phases is very large. The connected framework of SiO4 and AlO4 

tetrahedra suffer a strong rearrangement when passing from the cubic to the tetragonal 

configuration with a collapse of the cation stuffed trigonal channels of the cubic phase. 

In this case the maximum atomic displacement is of the order of 1 A, a value 



considerably larger than in the examples discussed above. Nevertheless, we will see in 

the following that despite the large magnitude of the distortion, it still can be 

rationalized in terms of modes. The temperature evolution of the structure includes the 

variation of two distortion modes with different symmetry, and as a consequence having 

quite different temperature behaviour.

  The number of atoms per primitive unit cell is the same in both phases, and 

therefore only modes at the Brillouin zone centre, i.e. modes keeping the lattice 

periodicity, are involved in the distortion. It suffices to introduce the experimental 

structures [REF27] of the two phases in the mentioned program AMPLIMODES, 

together with the transformation matrix relating the settings of the two space groups 

( a,b,c;1/2,0,0), to obtain the amplitudes and the specific features of the symmetry 

distortion modes present in the tetragonal phase. A scheme of the group-subgroup tree 

relating the parent and distorted symmetry is shown in Figure 6. There is a primary 

mode (irrep GM4+) which yields the observed symmetry break between the two phases, 

plus a secondary mode (irrep GM3+) with a higher isotropy subgroup (I41/acd), and the 

usual full symmetric distortion mode (irrep GM1+). The 30-dimensional configuration 

space of the I41/a structure (30 independent atomic coordinates define the structure) 

divides among these three distortion subspaces of 16, 10 and 4 dimensions, for GM4+, 

GM3+ and GM1+,  respectively. Their amplitudes at room temperature result to be 

4.61, 1.82 and 0.41 A. As expected the primary mode is significantly larger, although 

not in such strong proportion as in the other examples discussed above.

Palmer et al. [REF27] made a series of high-resolution powder neutron 

diffraction measurements of leucite as a function of temperature below and above the 

phase transition around 940K, and have reported structural models for the material at 

various temperatures. It is illustrative to analyse these structures in terms of modes and 

observe the temperature behaviour of the three distortion modes active in the tetragonal 

phase. Their amplitudes follow a well-behaved smooth temperature dependence, shown 

in Figure 7(a). Note that apart from the structures determined above room temperature, 

the study in [REF27] also determined the structure at 4K. Even the amplitudes 

corresponding to this isolated point at very low temperature agree with the smooth 

curves suggested by the high temperature data. The available points for the amplitude of 

the GM4+ distortion mode has been fitted to a continuous function, following the 

typical law of an order parameter of a discontinuous phase transition [REF2]. What is 



especially remarkable is that the curve fitted to the GM3+ amplitudes is just the square 

of the curve used for the GM4+ amplitudes, with only a scale factor having been fitted. 

Hence, we are observing a primary component in the structural distortion behaving as 

the primary order parameter, while a second one, weaker but significant, varies its 

amplitude as the square of the amplitude of the primary distortion, as expected from a 

secondary mode with faintness index 2 (see section 4). It should be stressed that in 

general for each individual atomic position the contributions of the two modes 

superpose, and therefore the simple law underlying the thermal evolution of the 

structure shown in Figure 9(a) is usually not directly observable in the thermal changes 

of single atomic coordinates or atomic distances.

One can also follow the temperature variation of the polarization vectors of the 

two distortion modes. The value of their scalar product with the one corresponding to 

the structure at 4 K can be used to monitor its change. One can see in Figure 7(b) that 

the polarization vectors of both modes are in general rather temperature invariant. This 

means that in each distortion mode the atoms follow well defined invariant correlated 

relative displacements, the temperature variation being essentially reduced to their 

global amplitude. This is specially true for the primary mode. For this mode except for 

the points closer to the transition the dot product maintains values larger than 0.99, and 

does not decrease in any case below 0.97. The polarization vector of the secondary 

mode GM3+ has a more significant variation, but is also quite small, except close to the 

transition. 

The approximate invariance of the polarization distortion modes can be understood in 

the light of the discussion presented in section 4. If we consider only the lowest 

anharmonic coupling of the secondary normal modes to the primary one and assume 

them essentially temperature independent as done in Landau theory, the secondary 

distortion mode minimizing the free energy will be formed by a linear combination of 

secondary normal modes that will be kept invariant for changes of the temperature and 

the amplitude of the primary normal mode.  For the primary distortion mode something 

similar happens, except that it is expected to have an overwhelming proportion of the 

primary normal mode. Hence, deviations of the ideal invariance due to higher order 

anharmonic coupling terms are expected to be smaller.

One may argue that the remarkable “rigidity” of the polarization vectors of the 



distortion modes is due to the fact that they correspond to rigid unit mode (RUMs) 

[REF29] of the tetrahedral framework in the leucite structure. Both distortions can be 

indeed considered RUMs for the framework of AlO4 and SiO4 tetrahedra. But the 

primary GM4+ distortion includes a significant relative displacement of the K cations, 

and its participation in the mode polarization vector is also invariant. We will see below 

other examples where connected framework of rigid units can not be considered, but 

nevertheless the property of the approximate invariance of the polarization vectors of 

the distortion modes is maintained, even between different compounds.

In Figure 7(b) one can see that the polarization vectors of both the primary and 

the secondary distortion mode have their largest variation close to the phase transition. 

We have observed this behaviour also in other systems. It is not clear if this is a genuine 

structural feature or an experimental spurious effect coming from the intrinsic difficulty 

of the measurements in the proximity of a phase transition. It is clear that the 

experimental uncertainty on the polarization vector increases as the mode amplitude of 

the mode decreases. The relative decrease of the amplitudes does not seem however 

sufficient to explain this systematic variation of the polarization vectors when the 

transition is approached.  On the other hand, it has been shown in many cases that the 

primary distortion mode well below the transition agrees nearly full percent with the 

primary normal mode. It can be then hardly understood that this agreement should 

deteriorate somehow as the system approaches the transition. The simple model 

explaining this correlation is in principle expected to be more appropriate for smaller 

distortions. Therefore we speculate that the significant variations of the distortion 

polarization vectors close to the transition points  is an indication of a poorer 

determination of the structures in these conditions.

It is remarkable that the intermediate phase of symmetry I41/acd, which has been 

proposed for a small temperature interval above 900 K, just before reaching the parent 

cubic configuration, would correspond to a primary distortion of symmetry GM3+, 

while a distortion of this symmetry is also present at room temperature, but only as a 

secondary induced distortion, as shown in Figure 7(a). It would be rather strange to 

have a distortion of this symmetry acting as a primary (unstable) mode only at higher 

temperatures. The mode decomposition of the I41/acd structural model at T=923K  of 

[REF27] yields an amplitude for this distortion of 0.86  A, also shown in Figure 7(a). 

This value is clearly at odds with the temperature behavior of the amplitude of the 



GM3+ distortion in the I41/a phase, which shows a fast but smooth tendency to zero at 

a temperature around 900K. The polarization vector of the GM3+ distortion mode in the 

P41/acd structural model is in fact very different from the one corresponding to the I41/

a phase, indicating that it a quite different type of distortion despite having the same 

symmetry.  

A primary mode responsible of a distorted phase is expected to be intrinsically 

unstable, with temperature acting as stabilizing factor, so that in general, its 

disappearance at lower temperatures is usually caused by its incompatibility with new 

stronger instabilities of different symmetry.  This is not the case here, since the phase 

I41/a produced by the primary GM4+ distortion mode is compatible with any GM3+ 

distortion. Of course, there can be exceptional cases of reentrant transitions, but this 

intermediate P41/acd phase would be even a more exceptional case, since the GM3+ 

distortion present would disappear when the system enters the I41/a phase, although it is 

fully compatible with this symmetry.   We can therefore conclude that most probably the 

structural model proposed for this claimed intermediate phase is not correct. 

Furthermore, the behaviour of the amplitude of GM3+ distortion below 900K shown in 

Figure 7(a) suggests that no intermediate phase of such symmetry exists.

7. Hexagonal perovskites ABX3

There is a considerable number of ABX3 compounds which crystallize in the so-

called hexagonal perovskite (2L) structure or slight distorted modifications of it. A 

representative of the parent hexagonal perovskite structure, with P63/mmc symmetry, 

underlying these structures is CsNiCl3 [REF 46].  For smaller A cations, the structure is 

usually distorted at room or lower temperatures, and polar configurations are rather 

common, producing ferroelectric phases [REF 47]. If the B cations are magnetic 

magnetically ordered phases also exist at low temperatures, and multiferroic properties 

combining ferroelectricity and magnetic ordering are in principle possible.  We will see 

here that it is very illustrative and illuminating to analyze and compare the structures of 

this family, doing a systematic mode decomposition with respect to the ideal hexagonal 

perovskite configuration. 

We first consider a representative of the family, namely the compound KNiCl3 



[REF48-especifica]. In the parent P63/mmc phase Ni, K and O occupy positions 2a, 2d 

and 6h. It has a ferroelectric phase at room temperature with space group P63cm with a 

triplicated unit cell (a+2b, -2a-b, c; 0 0 0).  A mode analysis of this phase was done “by 

hand” in REF 49. We present here its mode decomposition as obtained directly with 

AMPLIMODES, using the parameterization introduced above. The graph of maximal 

subgroups and irreps, relating the symmetry of the ferroelectric phase with that of the 

parent phase, is shown in Figure 8. One can see that there is a primary active irrep with 

wave vector (1/3,1/3,0) and label K3 (footnote: in REF49 the label used was K4. Here 

we maintain the labels provided by AMPLIMODES in accordance with the convention 

of ISOTROPY AND ISODISPLACE  which is essentially that of Miller and Love ?? 

[REF..]) and two secondary active irreps  associated with two intermediate subgroups. 

The K1 distortion also corresponds to a wave vector (1/3,1/3,0), so that it produces the 

cell multiplication, but maintains the point group of the parent phase, while the second 

distortion, GM2- at the Brillouin zone center, keeps the parent lattice and is the polar 

mode responsible of the spontaneous polarization in the distorted phase. 

From Figure 8 it can be deduced that the symmetry break from the parent phase 

to the room temperature structure could take place by means of two quite different 

mechanisms. The most obvious one would be a single phase transition with K3 acting as 

active primary irrep, and distortions GM2- and K1 appearing as secondary effects. But 

one could imagine a more complex symmetry breaking mechanism, with GM2- and K1 

being primary unstable modes, and producing in general two phase transitions, with an 

intermediate phase of symmetry P63cm or P63/mmc, depending on which of the two 

first becomes zero as temperature is increased.  This alternative mechanism has been in 

fact considered as a possibility in the case of YMnO3, which has a similar symmetry 

relation with its parent space group as KNiCl3, although both parent and distorted 

structures are quite different [REF 50].

In the case of KNiCl3, as in YMnO3 [REF-51, 52] , however, the mode 

decomposition in terms of the three symmetry breaking components K3, K1 and GM2- 

of the structure of KNiCl3 leaves little room for speculation. Their respective 

amplitudes (in A) are listed in Table 5. The much larger amplitude of the K3 

antiferrodistortive distortion is a clear indication that it can be identified with the 

primary order parameter of this phase, and it can be further inferred that K1 and GM2- 

are induced secondary effects. The material is then a ferroelectric of improper character. 



Figures 9 and 10 illustrate the polarization vectors of the three types of distortions 

intervening with so different amplitudes in the total observed distortion. The primary 

K3 distortion involves displacements of the columns of NiCl6 octahedra along the z-

axis, with the two internal columns displacing in opposite direction to the one at the 

origin. The magnitude of the displacement of this latter doubles the one of the internal 

columns. This non-crystallographic correlation introduced by the K3 symmetry is patent 

in the polarization vector listed in Table 7. The splitted Ni1 and Ni1_2 atoms within the 

asymmetric unit of the distorted structure move in opposite directions along z, with a  ½ 

relation among its displacements. The same relation exist among the displacements of 

the two Cl sites. But the table shows an additional correlation between the 

displacements of the Cl and Ni sites, namely their displacements within each column of 

NiCl6 octahedra are practically equal within experimental resolution, so that the 

distortion mode involves global displacements of the NiCl3 colums as rigid units. This 

correlation in the polarization vector of the primary K3 distortion is not forced neither 

by symmetry, nor by a strong rigidity of the Ni positions within the octahedra. In the 

observed structure in fact the Ni atoms clearly displace relatively to their surrounding 

Cl6 octahedra and approach along the c axis one of the two Cl3 triangles forming the 

octahedron. But these Ni displacements are not part of the K3 distortion, they follow a 

pattern according to the GM2- symmetry, as shown in Figure 6(b). In this GM2- 

distortion, all Ni atoms move in phase with the same amplitude, while the Cl atoms 

displace also in phase with similar amplitude but in the opposite sense. The GM2- 

distortion is completed with the displacements of the K atoms outside the octahedral 

columns, which move in the same direction as the Ni atoms. Hence we have a polar 

distortion with cations and anions moving in opposite senses, and therefore susceptible 

of producing a significant polarization, as observed experimentally [REF 47]. The mode 

decomposition also evidences that the displacement off-center of the Ni atoms within 

the NiCl6 octahedra is not part of the fundamental distortion (normal mode) that is 

unstable. This means that most probably these off-center shifts of the Ni atoms are not 

intrinsically favourable in energy terms, in contrast with the pure K3 distortion.

It should be stressed that by definition a distortion mode with a non-zero wave 

vector cannot induce any polarization, and only polar modes at the Brillouin zone 

center, as the GM2- , can be considered at the origin of any spontaneous polarization 

and can linearly couple with an external electric field. This is sometimes overlooked 



and in the present compound has led to speculations about possible ferrielectric 

properties [REF-53-japoneses]. From Figure 6 one can clearly see that the polar 

displacements of the GM2- distortion are fully homogeneous. Ferrielectricity can 

therefore not be supported by the experimental structure, and the confusion probably 

originates in the erroneous consideration of the dominating K3 distortion pattern (with 

opposite displacements of the octahedral columns) as the source of the spontaneous 

polarization.  

The secondary distortion K1, although quite small, seems to be 

significant within experimental resolution. As shown in Figure 10 and Table 7, this 

distortion concerns displacements of the chlorine and potassium atoms on the xy plane. 

The chlorine atoms in consecutive Cl3 triangles along the octahedral NiCl3 columns 

rotate in opposite senses around the z axis, while the displacements of the K atoms 

between the columns move in a sense consistent with the expected steric hindrances 

caused by the chlorine displacements.

           The faintness index (see section …) of the secondary distortion K1 is 2, while 

that of the polar mode GM2- is 3 (footnote: this can be readily checked using the 

program INVARIANTS from the package ISOTROPY 

(http://stokes.byu.edu/isotropy.html and REF…). Hence, the sign of the amplitudes of 

the secondary distortions are bound to that of the primary mode, according to the 

proportionality laws:

       AK1 proport.  AK3
2                                         (14)

       AGM2-  proport.  AK3
3

This means that an equivalent structure or domain (see section 6) will be given by the 

following changes in the signs of the amplitudes: (-AK3, AK1, -AGM2-). This is very 

important to compare the mode decomposition of similar or closely related structures. 

Table 8 compares the mode decomposition of KNiCl3 with those of other ABX3 P63cm 

structures considered isomorphic, namely TlFeBr3, RbMnBr3, BaMnO3 and TlCoCl3 

(footnote: the inorganic crystal structure database [REF] contains a few additional cases 

with vanadium as B cation, and RbTiI3 extracted from REF 60, but unfortunately in 

these models the z coordinate of two atoms (instead of one) were a priori fixed in the 

refined model, and therefore the structural models cannot be considered realistic). The 

http://stokes.byu.edu/isotropy.html


amplitudes of the three symmetry-breaking distortions are listed, and their polarization 

vectors are compared through their dot product with the one of KNiCl3. One can see 

that in the five compounds the distortion K3 is predominant and has within 

experimental resolution the same bidimensional polarization vector, which means that 

in all cases the octahedral BX3 columns displace as rigid bodies, including the B cations 

inside the BX6 octahedra. The polar distortion GM2- has however clear differences. 

Although the GM2- distortion in TlFeBr4 is essentially the same as in KNiCl3, the 

positive sign of their dot product is inconsistent with the change of sign observed in the 

primary distortion K3. This means that in TlFeBr3 the polar displacements of the A, B 

cations and X3 columns along z displayed in Figure 9(b) have opposite senses, with 

respect to the sense taken by the primary K3 distortion. In other words, an equivalent 

K3 distortion in both compounds would produce a spontaneous polarization in opposite 

directions. This must be taken with caution. It may happen that indeed the anharmonic 

coupling between similar K3 and GM2- distortions in the two compounds has opposite 

signs, but another reason could be that one of the two models corresponds to a local 

false minimum in the refinement process. Indeed, it has sometimes been reported in 

distorted structures false minima in the least square minimization corresponding to 

changes of sign of some of the irrep distortions modes present in the actual structure 

(REF 61). 

The sign of the dot products of the polarization vectors of the GM2- distortions 

in the other three compounds is consistent when compared with the dot product of the 

K3 mode. However, the three distortions differ significantly from the one of KNiCl3, as 

its dot product is only of the order of 0.7-0.8. This difference can be further assessed 

comparing the atomic displacements associated with the distortion mode in each case. 

Table 9 shows the polarization vector of the GM2- distortion mode of TlCoCl3.  One 

can see that in contrast with KNiCl3, the B cations displace along z in the same sense as 

the chlorine atoms, and with nearly the same amplitude, so that in this case the 

octahedral BCl3 columns essentially move as rigid units in the polar distortion. The 

very small off-center shift of the B cations within the octahedra is close to the 

experimental error and in fact in the opposite direction to the one observed in KNiCl3. 

We can expect the spontaneous polarization to be much weaker than in KNiCl3. 

The GM2- distortion in BaMnO3 and RbMnBr3 is very similar to the one of 

TlCoCl3. This can be seen in Table 8, where the alternative dot product with respect to 



the polarization vector of this distortion in TlCoCl3 is also shown. One can observe 

therefore, that despite the similarities among the structures, a clear difference exists in 

the secondary polar distortion of the materials, between the Ni and the Mn or Co 

compounds.

The very weak marginal K1 distortion has much larger variations between the 

compounds. As its amplitude is much smaller than the other two irrep distortions, its 

polarization wave vector is expected to have a larger error. In some of the compounds 

its amplitudes is so small, as in TlCoCl3, that it could considered as negligible; its 

polarization vector however is rather close to the one of KNiCl3 (see Tables 7 and 9), 

with A cations and Cl anions displacement being correlated in a similar form (see 

Figure 9). In some of the other compounds the polarization vector is quite different and 

the sense of the displacements of the A cations relative to those of the X anions can 

change. 

One can then summarize that the primary distortion mode is quite robust and 

transportable from one material to another, while the secondary distortions can vary 

considerably. In some cases this could be due to false local minima in the refinement 

process, while in others it can happen because of genuine changes in the scheme of 

harmonic and anharmonic couplings among the atomic displacements between different 

compounds. In any case, secondary modes have much smaller amplitudes and are bound 

to be worse determined. A look at the structure decomposed into modes can be very 

useful both to avoid the traps of false refinement minima, and to compare structures, 

where the differences appear mostly in changes of the secondary distortions, which 

although quite weak can be fundamental for the macroscopic properties of the material.

Some of the studies on these compounds have indicated that the alternative 

symmetry P-3c1, instead of P63cm could also used to refine the experimental data of 

the distorted structure with similar reliability factors, and in some cases the 

experimental data was not sufficient to distinguish between the two models and only an 

arbitrary choice between the two models could be done (REF57, REF58).  In fact, as 

easily checked with SYMMODES [REF] or ISOTROPY[REF] this alternative 

symmetry for the distorted phase would also correspond to a distortion K3 as primary 

mode, and K1 as secondary. The difference with the P63cm symmetry break would be 

associated with a change in the direction of the order parameter K3 in its two-



dimensional irrep space, i.e. a different (orthogonal) linear combination of the two 

independent modes of this symmetry. This would be sufficient to change the symmetry 

to P-3c1, and cancel the possibility of having a secondary polar distortion. The fact that 

the structure of this secondary polar distortion, only present under the hexagonal 

symmetry, is quite comparable in all the compounds (see table 8), is a significant factor 

that favors the P63cm model as the most plausible one.

Another illustration of the insight that the mode decomposition can provide is 

the comparison of the structure of RbMnBr3 at 80K, which has its mode decomposition 

summarized in Table 8, with the structure of the same compound at 1.7K, reported in 

the same work (REF 57). The amplitudes of the three irrep distortions of K3, K1 and 

GM2- symmetries are at this lower temperature 0.53, 0.15 and 0.14, respectively, to be 

compared with the ones listed in Table 8 for the structure at 80K. The distortion 

amplitudes have increased as one would expect, but their polarization vectors have 

some clear inconsistent variation. Their dot product with those at 80K give 0.9998, 

-0.90 and 0.996, respectively. Hence, the distortion K1 keeps its internal structure 

similar to the one at 80K, but has its sign switched, while the other two distortions are 

practically invariant except for its amplitude increase. As discussed above, the K1 

distortion has its sign fixed by that of the primary mode, and a change of sign of this 

distortion describes a non-equivalent structure. Therefore, we have here most probably 

another example of a defective structural model caused by a secondary refinement 

minimum with some of the irrep distortions switched. As the amplitude of the K1 mode 

is significantly larger at 1.7K, the incorrect sign of this distortion is most probably the 

one at 80K. This could also been inferred from Table 8, where the decomposition can be 

compared with the one of KNiCl3.

Further consideration requires the hexagonal ABX3 compounds that exhibit a 

distorted structure of even lower symmetry. KTiCl3, KTiBr3 and KTiI3 are reported to 

have a distorted hexagonal 2H perovskite structure with space group P63. The three 

structures have been obtained from single crystal X-ray diffraction and reported in a 

recent publication [REF 62]. The reliability factors are however rather poor, the 

weighted R factor being 0.10, 0.15 and 0.16 for KTiCl3, KTiBr3 and KTiI3, 

respectively. Clearly, the structural model for KTiCl3 is much more reliable than for the 

other two compounds. One can do a mode decomposition of the three structures similar 

to the one done for the P63cm compounds. The transformation matrix relating the 



lattice and origin of these P63 compounds with the one of the hexagonal 2H perovskite 

is the same as for the group P63cm.  Hence the space group of these compounds is a 

subgroup of the P63cm observed in the compounds discussed previously. Figure 11 

shows the graph of maximal subgroups relating the parent and distorted symmetries in 

this case. The irrep distortions permitted by the P63cm symmetry are enlarged with new 

irrep components associated with other intermediate symmetries. The most important 

point evidenced by Figure 11 is the fact that there is no single irrep distortion that can 

produce the symmetry break between the parent and the distorted symmetries, i.e. the 

distortion present in these P63 phases must have more than one primary distortion. 

From Figure 11 it is clear that at least two distortions corresponding to two different 

irreps are necessary to explain the symmetry break. There could be many pairs of irrep 

distortions which could be responsible of the observed symmetry P63, but assuming 

that the irrep K3 is also in these compounds a primary distortion, the second primary 

mode could only be either GM2+, K4 or K2. The presence of any one of these three 

distortions together with the K3 distortion would be sufficient for explaining the 

observed  P63 symmetry. The mode decomposition of these three structures 

summarized in Table 10 permits to identify the distortion GM2+ as the searched second 

primary distortion. It is clearly the dominant component of the distortion superposed to 

those yielding the P63cm symmetry, in the three compounds.  This distortion is 

represented in Figure 12. Its polarization vector is fully determined by symmetry, as 

only one basis symmetry mode is involved. It is a rotation of the octahedral BX3 

columns around the z direction. As a primary distortion, a switch of the sense of these 

rotations independently of the sign of the other primary distortion  K3, yields an 

equivalent configuration. Figure 11 shows that the secondary distortions K2 and K4 

must be induced by the simultaneous presence of both primary modes, as their isotropy 

subgroups are not supergroups of any of the two primary symmetries P63cm or P63/m, 

but of their intersection P63. Indeed, using the module INVARIANTS from ISOTROPY 

(REF) it can checked that the lowest coupling of distortions of symmetry K2 and K4, 

with both primary modes, and responsible of the induction in the distorted phase are 

AK3AGM2-AK2 and AK32AGM2-AK4, respectively. Both distortions are therefore 

sensitive to the sign of the GM2- distortion, while only K2 would also switch with a 

change of sign of the K3 distortion.

The K3, K1 and GM2- distortions present in these three P63 structures are 



compared in Table 10 with those of the P63cm phase of KNiCl3. In the case of KTiCl3, 

the coincidence of the polarization vectors of the three distortions is striking, despite the 

quite different amplitudes. To be stressed is the correlated change of sign of the K3 and 

GM2- distortions, corresponding to an equivalent twin related configuration.  On the 

other hand, the mode decomposition of the other two compounds, with much worse 

reliability factors, points to where the problems of these structural models could be. 

While the polarization vector of the primary mode K3, given by a single parameter, is 

essentially the same as in KNiCl3, the secondary ones have much larger relative 

amplitudes than in KTiCl3 and their three dimensional polarization vectors have erratic 

changes of sign, not even consistent between the two. If KTiI3 and KTiBr3 are 

compared, their distortions GM2- and K1 are very similar but with their signs switched, 

and not corresponding to equivalent twin related configurations. Probably these 

structures also correspond to false minima associated with switched secondary modes.

The mode decomposition of these P63 ABX3 structures also helps to infer the 

probable temperature behaviour of these compounds. If, as usual, they adquire the 

parent symmetry P63/mmc at high temperatures, one can expect the existence of an 

intermediate P63cm phase after the second primary mode GM2+ is thermalized. One 

cannot discard of course a single first order phase transition with both order parameters 

becoming zero simultaneously, but in most cases two active irreps imply two successive 

symmetry breaks. 

9.  Distorted pseudocubic perovskites. Sequence of phase transitions

There are many ABX3 structures having as parent structure the cubic perovskite 

with space group Pm-3m. Depending on the so-called Goldsmidt or tolerance factor 

which somehow indicates the misfit of the sizes of the three intervening ions, different 

distorted structures exist, and the cubic parent phase is often reached at high 

temperatures after following some sequence of phase transitions. For these simple 

structures with rather rigid BX6 octahedra, a mode description is quite simple; many 

normal modes are fully determined by symmetry and can be identified with tilts or 

RUMs [29] of the framework of octahedra. A good deal of the distortions present in 

these compounds can in fact be described as tilting schemes of the BO6 octahedra, and 

have been rationalized from this viewpoint [REF30,31,32]. The more general approach 



of a mode description has also been considered and investigated [REF 33,34]. It is not 

the aim of this section to review such extense subject. We only want to present a few 

cases within this family, as further examples of the power of a systematic mode 

decomposition. 

i) SrZrO3  

Let us consider the very well studied case of SrZrO3, which has at room temperature a 

distorted perovskite structure with Pnma symmetry [REF35, 36 and references therein], 

which is typical of many ABX3 compounds having a too small A cation to stabilize the 

cubic configuration.  The cubic perovskite structure is only attained in this compound 

above 1340K.  The setting of its orthorhombic Pnma space group is related with the 

supergroup Pm-3m corresponding to its parent structure by the transformation: a+c, 2b, 

-a+c; 0,0,0. The distortion involves mainly correlated tiltings of the ZrO6 octahedra, i.e. 

RUMs of the octahedral framework (see Figure 13), with a multiplication of the unit 

cell by a factor 4. This implies the presence of a considerable number of distortion 

modes of different symmetry, compared with the examples considered above. On the 

other hand the number of free atomic coordinates is quite limited. Figure 14 shows the 

graph of maximal subgroups connecting the two space groups and, if existing, the irrep 

yielding these intermediate symmetries as isotropy subgroups [REF7]. It can be seen 

that distortions with three different wavectors M ( ½ ½ 0  ), X ( 0 ½ 0 ) and R ( ½ ½ ½), 

at the border of the cubic Brillouin zone will be present in the Pnma structure. 

Furthermore, the graph shows that the Pnma symmetry of this phase is not an isotropy 

subgroup of Pm-3m, i.e. this symmetry cannot be attained with a single primary mode. 

At least two primary modes are necessary. In other words, the Pnma phase cannot be 

generated by a single mechanism or a single unstable mode of the cubic configuration, 

but at least two different normal modes must be active. In the language of Landau 

theory, the phase Pnma should be the result of the condensation of two order 

parameters. These order parameters are in general expected to be thermalised and 

become zero at higher temperatures, but each one independently, producing two phase 

transitions. Thus, one can expect from this simple symmetry relation regarding the 

parent and distorted space groups, the probable presence of an intermediate phase 

before the system reaches the cubic perovskite.  

From the graph in Figure 14 one can establish the different possible primary 



distortions that may be relevant. One has to look for pairs of isotropy subgroups which 

have as intersection the observed space group Pnma. There are many possibilities. Any 

pair of the distortions indicated in the graph, except for the pair of the two M modes or 

of the pair of two R modes would be sufficient to explain the observed Pnma symmetry. 

A mode decomposition of the experimental structure at 20C [REF35] clearly 

indicates which are the ones relevant.  Table  11 lists the amplitudes of all the distortion 

modes, and one can clearly see that two distortion amplitudes are much larger, namely 

those of the distortion modes R4+ and M3+, with the one for R4+ being significantly 

larger.  A scheme of the five distortion modes participating in the Pnma structure can be 

seen in Figure 15, and their polarization vectors are listed in Table 12. The two primary 

distortion modes are tilting modes of the octahedra with a single symmetry mode 

involved, and therefore fully determined by symmetry. The secondary mode X5+ 

however involves both oxygen and Sr displacements, and despite implying some 

distortion of the octahedra it has a significant non-zero amplitude. The two remaining 

secondary distortion modes are very weak. The M2+ is zero within experimental 

resolution, while the R5+ distortion although very small is present in the structure, and 

mainly involves displacements of the Sr atoms along the orthorhombic z direction. 

Distortion modes of symmetry R4+ and M3+ are therefore the two dominant 

primary distortion modes underlying the Pnma structure of SrZrO3. An analogous 

symmetry mode decomposition in other compounds shows that this in fact happens in 

most of the distorted Pnam perovskites, with again the R4+ distortion being somehow 

stronger in most cases. In this simple case, these primary modes are defined in one-

dimensional spaces (see tables 11 and 12), and their polarization vectors are fully 

determined by symmetry, corresponding to simple so-called tilt systems of the octahedra 

[REF 30,33]. Only their amplitudes are variable, and and for small values they are 

linearly related with the corresponding tilt angle.  

The identification of these tilt sytems as the two primary modes, with a 

symmetry given by an irrep of the parent space group Pm-3m, is an information directly 

obtained from the structure, which is very valuable to infer possible transition 

sequences, and general trends in the whole family.  In fact, as pointed out in previous 

literature [REF 33], the instability of the perovskite cubic configuration with respect to 



RUMs of symmetry R4+ and M3+ underlies many of the distorted phases with various 

symmetries observed in perovskites. The R4+ RUM modes correspond for instance to 

the well known (three fold degenerate) instability present in SrTiO3 which competes 

with the ferroelectric one [REF37 and references therein], and yields for this compound 

at low temperatures a tetragonal phase with I/4/mcm symmetry  (footnote: the irreps 

labels are those of CML??, also used by ISODISPLACE and ISOTROPY [REFs], but 

do not necessarily coincide with those used in other studies [REF 34]. Unfortunately, 

even keeping a fixed specific choice of notation, the irrep label may change depending 

on the origin choice in the parent structure. For instance, if the origin is chosen at the 

site of the Sr atom instead of the Zr, the irrep label of the distortion R4+ would change 

to R5-). Both irreps R4+ and M3+ are three-dimensional and the distortion and 

symmetry realized in SrZrO3 corresponds to specific directions within the space of each 

representation indicated symbolically in Table 11. An extended general explanation of 

the meaning of specific directions of a distortion mode within the irrep space and their 

relation with the isotropy subgroup, can be found in [REF 38, 33].  In the present case, 

changing the direction within the irrep space, means in general a change of the axis 

around which the tilts of the octahedra take place, with a consequent change of the 

resulting (isotropy) space group. For instance, the possible symmetries for a R4+ 

distortion are given by the following isotropy subgroups (footnote: they can be obtained 

with ISODISPLACE [REF] and they are also listed in [REF 33]):

 

I4/mcm, (a+b, -a+b ,2c; 0,0,0) , (a,0,0) 

Imma, (a+c, 2b, -a+c; 0,0,0), (a,a,0)

R-3c,  (-a+b, -b+c, 2a+2b+2c; 0,0,0) , (a,a,a)

C2/m, (-2c, 2b, a+c; 0,1/2,1/2),  (a,b,0)

C2/c, (-a+2b-c, -a+c,a+c; 0,1/2,1/2), (a,a,b) 

P-1, (b+c, a+c a+b; 0,0,0), (a,b,c)

Where the last row indicates for each case the direction of the distortion in the irrep 



space, in the notation of [REF37].  

For a given R4+ instability of the cubic perovskite,  the realization of one or 

other space group of the above list depends on the anharmonic terms in the free energy 

function discussed in section 4, which creates the anisotropy of the energy map in the 

three-dimensional subspace defined by the R4+ unstable three-fold degenerate 

distortion modes. Usually, because of the smoothness of the energy map  the energy 

minima will correspond to high symmetry directions within the energy map [REF 39] . 

These energy minima can change with temperature and a sequence of first order phase 

transitions then happens, with symmetry changes between different isotropy subgroups 

of the same irrep. This is observed for instance in CeAlO3 where only R4+ modes act 

as primary modes with a phase transition sequence: 

                 I4/mcm --- Imma ---- R-3c ----- Pm3m

for increasing temperature [REF40, 32bis], corresponding to changes of direction of the 

R4+ order parameter (distortion) according to the list of isotropy subgroups above. This 

is fully analogous to the consecutive dicontinuous phase transitions taking place in 

BaTiO3, due to changes of the direction of its spontaneous polarization, which are 

directly related with changes of direction of its polar GM4- distortion within its three 

dimensional irrep space (see section 3).

In the case, of SrZrO3, the R4+ distortion corresponds to the direction (a,a,0) 

with symmetry Imma. It is namely a combination of two equal tilts around the [1,0,0]p 

and [0,0,1] p cubic axes, which is equivalent to a tilt around the oblique direction 

[1,0,1]p, i.e. around the x direction of the orthorhombic setting (see Figure 12). 

As the R4+ distortion is clearly much stronger than the M3+ distortion, one can 

infer that this latter will  be thermalized at lower temperatures leaving a phase with only 

R4+ as primary distortion. If the direction of the R4+ distortion mode does not change 

one can predict a phase transition into a phase with Imma as space group, which can in 

principle be continuous. If temperature is further increased subsequent transitions 

corresponding to changes of direction of the primary R4+ distortion mode may happen, 

until the cubic phase is finally reached. And indeed this what happens in SrZrO3, with a 

reported transition sequence [REF36]:

                          Pnma --- Imma --- I4/mcm --- Pm-3m  



Therefore, the relative weight of several primary distortion modes in a distorted 

structure can give important clues concerning its behaviour at higher temperatures. We 

can crosscheck this by comparing the mode decomposition of SrZrO3 with the 

analogous phase of NaTaO3 [REF41], also shown in Table 11.  In this compound the 

amplitude of the R4+ distortion is about 20% smaller, while the M3+ distortion is of the 

same magnitude. Although the R4+ distortion is still larger, its amplitude is much closer 

to the one of M3+. In this case the transition sequence is quite different: 

                           Pnma --- Cmcm ---- P4/mbm --- Pm-3m 

The mode decomposition of these high temperature phases is shown in Table 13.   It can 

be seen that the Cmcm phase is also the result of the presence of the two distortion 

modes with irrep symmetry R4+ and M3+, but the R4+ distortion has changed its 

direction, so that now its isotropy subgroup is P4/mcm. Its amplitude is now 

significantly smaller than the one of the M3+ distortion. One can then infer that the next 

phase P4/mbm must corresponds to a phase caused only by the presence of the M3+ 

distortion, with the R4+ distortion thermalized at a lower temperature than the M3+, the 

opposite of what happens in SrZrO3.

The M2+ distortion, which distorts the BX6 octahedra (see Figure 15 and Table 

12) is practically negligible both in SrZrO3 and NaTaO3, but can have important 

amplitudes in the Pnma phase of perovskites with Jahn-Teller ions. The local symmetry 

of the octahedral distortions associated with this mode correspond to the one induced by 

the local Jahn-Teller effect [REF63]. Table 11 shows the mode decomposition of 

LaMnO3 [REF64], where the presence of a significant M2+ distortion is patent, in 

contrast with the previous examples. Despite its compatibility with the symmetry 

produced by the two primary dominant distortions R4 and M3+, the M2+ distortion in 

Jahn-Teller Pnma perovskites act as a third primary mode instead of as a secondary 

induced distortion.  In fact this additional primary mode usually introduce a new phase 

transition corresponding to its independent condensation. As the Pnma symmetry  is 

compatible with the distortion, this additional Jahn-Teller transition would not represent 

any symmetry change in a structure with both R4+ and M3+ already frozen, and a 

isosymmetrical Pnma --- Pnma transition takes place, with a conspicuous increase of the 

amplitude of the M2+ distortion acting as a non-symmetry breaking order parameter. 

This is what happens for instance in LaMnO3 at room temperature at 750K [REF64].



8. Distorted structures as commensurate modulated structures. Mode 

decomposition vs. superspace description

Although not fully equivalent, the description of commensurately distorted 

structures in terms of symmetry-adapted distortion modes is closely related with the 

alternative approach of considering these structures as commensurately modulated  and 

the use of superspace symmetry [REF 42, 43]. Displacive distortion modes are in fact 

displacive modulations with wave vectors associated with their corrresponding irrep. 

Thus, in the previous example of SrZrO3 there are modulations with wavevectors ( ½ ½ 

0  ), ( 0 ½ 0 ) and ( ½ ½ ½).

 In the description of a commensurately distorted structure as a modulated phase 

a set primary modulation wave vectors are defined and the distortion is described as a 

superposition of harmonics for this set of wave vectors. The symmetry is given by a 

superspace group, which defines the correlations and symmetry restrictions that the 

atomic displacements must have for each of these harmonics. In the case of 

incommensurate structures the number of harmonics is unlimited, but in practice, a 

hierarchy exists and the first harmonics are expected to be dominant, so that the 

expansion can be truncated. In a commensurate case, the number of possible harmonics 

is finite, and a hierarchy between first and higher harmonics also exists, so that in some 

cases the highest harmonics can be neglected. Under these premises, the program JANA 

[REF67], for instance, is adapted to treat and refine any commensurately distorted 

tructure with up to three independent primary modulation wave vectors, using the 

superspace formalism.

In simple cases, a mode decomposition in terms of irrep distortion modes and a 

decomposition with modulation harmonics under a postulated superspace group are 

fully equivalent, i.e. each irrep distortion corresponds to a specific harmonic in the 

modulation. The secondary modes can in general be identified with higher order 

harmonics in the superspace description. This happens when the average space group in 

the superspace group is the one of the parent structure and a single primary wave vector 

exists, so that the modulation is one-dimensional. In more complex cases, the two 

methods may have some differences in the decomposition of the global distortion. In 

general, if the unit cell of the distorted phase is much larger than the parent one, a mode 

decomposition would not bring much benefit to what is already provided by the 



superspace approach, and would be somehow less efficient, as the structure of the 

polarization vectors are trivially given by the modulation wave vector. On the other 

hand, for supercells in the distorted phase which are only a small multiple of the parent 

phase, and involve modulations along several directions, the mode approach is much 

more convenient.

            We illustrate these considerations with some examples. Let us consider first the 

simple case of the triclinic structure of NbS3. van Smaalen [REF65] showed that the 

triclinic structure of this compound with space group P-1 could be described and refined 

as a modulated structure with modulation wave vector (0 ½ 0), with respect to a basic 

monoclinic structure having space group and a unit cell with half the volume. The 

structure could be refined satisfactorily introducing a single harmonic in the 

modulation, which implied to use a smaller number of parameters than a conventional 

refinement in the triclinic space group P-1. The reason for this can be clearly seen in the 

mode decomposition of the structure, if determined in a conventional form (REF66), 

which is summarized in Table 14. The decomposition has been done with respect to a 

virtual parent P21/m structure symmetrising the experimental one, so that the GM1+ 

distortion has been minimized to cero. One can see that the symmetry breaking 

distortion has two components: a strong distortion Z1 with wave vector q= (0, ½ , 0) 

yielding the observed symmetry, and a much weaker secondary distortion GM2+ at the 

Brillouin zone center, with an amplitude more than one order of magnitude smaller. 

This secondary mode also breaks the binary symmetry, but maintains the lattice of the 

parent phase. Its weakness is another example of the hierarchy of distinct irrep 

distortions in distorted structures, which has been discussed all over this paper. In the 

superspace description this secondary distortion corresponds to a second harmonic with 

wave vector 2q, which for this commensurate case is formally equivalent to (0,0,0), but 

that the superspace description treats separately [REF43]. Hence, a superspace 

refinement of the structure considering only sinusoidal modulations done in REF65 is 

fully equivalent to a refinement within a model with only the primary distortion Z1 as 

part of the symmetry breaking distortion, with the distortion GM2+ forced to have cero 

amplitude.

Let us consider now a more complex case in the much-studied ferroelectric 

phase of K2SeO4. This structure has been both analyzed as a modulated phase [see 

REF44 and refs therein] and in terms of irrep distortion modes [REF45]. It is a 



commensurate Pna21 structure, with a triplication of a parent Pnma unit cell, which is 

the consequence of the lock-in of the modulation wave vector q=alpha a* of a previous 

incommensurate phase into the value alpha=1/3. It is then natural to describe this 

structure as a one-dimensional modulated phase with the same superspace group as the 

incommensurate phase, but with a commensurate wave vector, as was done in [REF44]. 

We can however also apply the mode decomposition explained above.  To use 

AMPLIMODES we only need to introduce the Pnma (parent) and Pna21 structures, and 

the tranformation relating both groups: -3a, c,b; 0 0 0. The results are summarized in 

Table 15. As expected, we have a dominant component for the irrep SM2, with wave 

vector (1/3,0,0) (footnote: it important to stress that even keeping a fixed standard for 

the labelling of the irreps (here consistent with ISOTROPY and REF (Cracknell…. ), 

the irrep labels may change for different equivalent choices of the wave vector 

representative. One should also take into account the dependence of the irrep label 

mentioned above on the choice done for describing the parent structure). This prevailing 

SM2 distortion is the primary unstable mode that comes from the incomensurate phase 

through the lock-in of the wave vector. This primary distortion corresponds to the first 

harmonic of the modulation in the incommensurate phase and determines the 

superspace group symmetry governing the symmetry properties of all additional 

harmonics [REF65]. There is also a weaker distortion with the same wave vector but 

different irrep, namely SM3. This secondary distortion can be identified with the second 

harmonic in a modulated description. For a wave vector q=(1/3,0,0), the second 

harmonic distortion has the same wave vector as the first harmonic, but in the 

superspace approach, as in the previous case, it can be treated as a distinguishable 

second harmonic of the modulation functions if we use the superspace group symmetry 

of the preceding incommensurate phase. The symmetry properties of the atomic 

displacements described by the irrep SM3 are then equivalent to those introduced on the 

second harmonic modulation by this superspace group. Similarly the additional GM4- 

distortion is the polar distortion responsible of the spontaneous polarization and 

ferroelectric properties in this commensurate phase, and can be identified with a third 

harmonic in the atomic modulations [REF 45, 68]. In this example, it is noticeable that 

the two allowed secondary distortions have smaller but significant amplitudes, so that a 

satisfactory direct refinement of the structure using either modes or superspace 

modulation functions requires the same number of positional parameters as a 



conventional refinement.

As a third example we take the mode decomposition of the ninefold 

commensurately modulated phase of thiourea (SC(NH2)2). This structure is an 

intermediate lock-in phase sandwiched within the extense range of an incommensurate 

phase [REF 69   ]. The parent non-modulated structure has Pnma symmetry, and the 

modulation wave vector is q=1/9 b*, with therefore a ninefold multiplication of the unit 

cell. The structure has been refined both as an incommensurately modulated structure 

using the superspace approach [REF 70 ] and as a conventional superstructure [REF 

71]. The two models were shown to be approximately equivalent [REF 43] (see below). 

Table 16 illustrates the features of the structure refined as a conventional superstructure 

when decomposed in irrep distortions (the hydrogen positions have not been included). 

A distortion with symmetry given by the irrep DT4 with a wave on the line DT 

(0,beta,0) of the Brillouin zone with beta=1/9 is dominant. The amplitudes of the 

additional distortions are between 10 to 20 times smaller so that it can be clearly 

identified as the primary mode. Note that the four symmetry compatible irrep distortions 

have as isotropy subgroup the observed space group, and therefore from symmetry 

argument any of them could be the primary distortion. In this case the primary character 

of the distortion with q=1/9 b* can only be derived from the comparison of the 

amplitudes of the different irrep distortions, in contrast with the preceding case.  Also, 

in contrast with K2SeO4, here all irrep distortions have different wave vectors 

corresponding to distinct harmonics of the primary one. Depending on the parity of the 

irrep wave vector, the small representation associated with the distortion modes changes 

from DT4 to DT1. It is noticeable that the secondary third order harmonic with wave 

vector 3q=(0,1/3,0), of the same symmetry as the primary distortion, has a larger 

amplitude than the second one, with a different symmetry. This third harmonic is 

responsible for the soliton like form of the atomic modulations in the superspace 

description [REF 69,43].  The modulated refinement in [REF 69] was done using only 

harmonics up to 3rd order for describing the atomic modulations. This means the 

neglection of a possible fourth order harmonic, which in the mode decomposition 

corresponds to the weaker DT1 distortion with wave vector 4q= (0, 4/9, 0). Table 16 

shows that in the model refined as a conventional superstructure the amplitude of this 

distortion, although very small, is larger than its standard deviation and therefore 

significant. This difference is at the origin of the small differences between the positions 



in the two models, shown in REF 43. 

It is interesting to compare the description done of each harmonic 

modulation in the two approaches, showing how in this case, the mode parameterization 

discussed here becomes inefficient and highly redundant, compared with the superspace 

approach. Table 17 shows the polarization vector of the primary DT4 distortion. To be 

noticed how the distortion is in practice restricted to displacements along the x and z 

directions, although the DT4 symmetry does not forbid displacements along the y 

direction. However, the description of the distortion mode is quite redundant. The three 

cations S, C and N have a single independent site in the parent unit cell and are splitted 

into 5, 5 and 9 independent sites, respectively, in the ninefold structure.  To describe the 

distortion mode it is necessary to give the mode displacements for all atoms in the large 

asymmetric unit of the distorted phase with 19 atoms. In these 19 atomic displacements 

the trivial correlation between consecutive parent unit cells along the modulation 

direction coming from the mode wave vector is inextricably entangled with the non 

trivial one coming from the actual DT4 character of the irrep. In contrast, the 

superspace approach only requires giving explicitly the three amplitudes that define the 

first harmonic of the modulation function for the three independent atoms in the 

asymmetric unit of the parent phase [REF 70]. The sinusoidal function so defined, 

together with the modulation wave vector is sufficient to describe the displacements of 

the equivalent atoms in the nine consecutive parent unit cells forming the superstructure 

unit cell, while the correlation according to irrep DT4 with those atoms that are 

symmetry related by rotational operations in the parent phase is automatically 

introduced by the applied superspace group [REF 72]. 

In REF 71 where a conventional refinement was performed two distinct 

models (models 1 and 2) within the Pnma space group were reported. The authors could 

not decide between the two models, although clearly different, as both gave equal 

reliability factors. It was pointed out in REF 43 that this uncertainty was due to the 

invariance of the diffraction pattern for a global phase shift of the atomic modulations 

when described as a modulated structure in superspace, and the two models 

corresponded to the two distinct different choices of the global phase of the modulation, 

namely pi/18 and -pi/18 (or their equivalents by shifts of 2p/9). This close relation 

between the two models is also reflected in their mode decomposition, as shown in the 

following. Up to now we have only discussed the mode decomposition model 1. While 



the tranformation relating model 1 with the used parent structure (-a, -9b, c;0 0 0 ) did 

not require any origin shift, a proper comparison of model 2 requires, if the parent 

structure is kept unchenged, to add an origin shift (0 ½ 0). This means that in the case of 

mode 1 the inversion centre at the origin is mantained, but not the one at (0 ½ 0), while 

in model 2 the reverse happens. Table 18 presents the resulting mode decomposition of 

model 2. One can see that the amplitudes of the four irrep distortions coincide with the 

ones of model 1, if their standard deviations are taken into account. The difference 

between the two models appears however, in the column that lists the direction taken by 

the irrep distortion within the irrep space. In this case the irrep is bidimensional and a 

two dimensional vector (a, za) gives the direction with respect to a chosen orthonormal 

basis.  This fixed direction is related with the fixed global phase of the modulation 

forced in a modulated description of the structure.  Comparing Table 16 and table 18 

one can see that the angle phi=arccot(z) for the primary distortion is -2pi/36 for model 

1, while it is 2pi/36 in model 2, and therefore we can directly relate this angle with the 

modulation global phase of the modulated description. In the modulated description the 

global phases of the secondary harmonics are multiples of the primary modulation in 

accordance with their order. The directions listed in Tables 16 and 18 fullfill analogous 

relations. If we call phi1 the angle arccot(z)  for the primary mode in each model, the 

corresponding phases for the secondary modes with wave vectors 2q, 3q, and 4q are (pi/

2 -2phi1), 3phi1 and (pi/2-4phi1), respectively. The meaning of this angle depends on 

the basis chosen in the irrep space. Thus, the third harmonic with the same symmetry 

DT4 as the primary distortion fulfill directly the expected phase correlation, while for 

the even modes, due to some with DT1 symmetry, the complementary angle appears 

due to a change in the setting used (or a coupling with factor i numero imaginario 

PENDIENTE DE COMPROBAR)

As a final example to illustrate and evidence clearly the similarities and 

differences of both approaches we consider phase GaII of the element Ga under 

pressure, which to our knowledge is the most extreme case achieved in parameter 

reduction when describing a superstructure as a modulated structure within the 

superspace formalism. This phase of symmetry C2221 [REF 74], stable between 2 and 

10 GPa, has a very large unit cell with 14 symmetry independent Ga atoms, but it has 

been shown to be a simple commensurately modulated structure of a Fddd structure 

with only a symmetry independent atom in the Wyckoff position 8a (1/8, 1/8, 1/8) [REF 



73]. The superspace group describing the symmetry properties of the modulation was 

found to be Fddd(00gamma) 0s0, with gamma= 9/13. Hence the modulation wave 

vector was chosen  (0 0 9/13) and the conventional unit cell is multiplied by 13, with 

respect to the virtual Fddd parent structure. Within the superspace approach the number 

of possible harmonics for the single atomic modulation required to define the full 

structure is 25. But the structure could be satisfactorily described with only three 

harmonics, which meant a reduction from 38 to 4 positional parameters, when passing 

from a conventional crystallographic description to a modulated one. The 

transformation relating the setting of the Fddd parent structure with the experimental 

one [REF 74] can be chosen as a,-b,-13c; -1/8 ,1/8,-3/8. The maximum atomic 

displacement in the distortion relating both structures is of the order of 0.8 A and its 

mode decomposition is summarized in Table 19. The number of possible irrep 

distortions is 25, in accordance with the number of allowed harmonics in the superspace 

description, but the irreps involved have only 13 possible wave vectors of type n/13 c*, 

with two different possible small irreps for each of them except for n=13, which 

corresponds to a special point Z at the brillouin zone border and only an irrep is 

compatible. The irrep distortions with n odd all have as isotropy subgroup the observed 

symmetry and are from this viewpoint possible primary modes, while the even modes 

are all secondary, with higher isotropy subgroups. The amplitudes obtained for the 25 

symmetry components in the distortion evidences the dominant role played by the LD3 

distortion with wave vector q= 9/13 c*, in accordance with the superspace description. 

This LD3(9/13) distortion is clearly the primary distortion, being more than one order of 

magnitude larger than the rest of components, except for two additional irrep 

distortions, which can be identified with a second and a third harmonic. Indeed, the 

LD4[1/13] distortion with a considerable amplitude has a wave vector equivalent to 3q, 

while LD2[8/13] can be identified with a second harmonic with wave vector 2q 

equivalent to -8/13c*.  These three irrep distortions correspond therefore to the three 

first harmonics, which were considered sufficient in [REF 73] to describe the structure. 

In general, for each wave vector n/13 c* two irrep distortions exist with symmetries 

LD3 and LD4 for odd terms and LD1 and LD2 for even terms, except for the case n=13, 

with a single irrep Z1. Each of these irrep distortiond corresponds  to one of the 

harmonics used in the superspace description. A modulation harmonic of order m 

(m=2,...,25) in the superspace description is in fact a distortion with wave vector qm= 

9m/13 c* which can be changed to an equivalent wave vector qn= n/13 c* (n=1,…,13) 



through a reciprocal lattice translation 2p c* (p integer): qn= qm + 2p c* or –qm+2p c*. 

This change implies also to change the small irrep associated with the wave vector, 

depending on the parity of p, so that for n odd, it changes from LD3 to LD4, depending 

on p being even or odd, while for n even, the change is from LD1 to LD2 for p even to 

odd. This property can be derived from the form of the irreps of space groups, and their 

labelling through a wave vector representative and a small irrep, which depends on the 

chosen wave vector [REF-irreps]. Thus, for instance the LD3[1/13] distortion can be 

considered a 23rd harmonic, its wave vector being q23= 23*(9/13) c* = -(1/13)c* + 

8(2c*) with p even, while LD4[1/13] corresponds to the third order harmonic with q3= 

3(9/13)c*= (1/13)c*+2c*, and p odd. Following these rules the correspondance between 

the 25 harmonics of the superspace description and the 25 irrep components of the 

mode decomposition can be done. This is given in the first column of Table 19.  It can 

be clearly seen here the equivalence between the two approaches, and the more efficient 

way the superspace approach can deal with the symmetry constraints present in each 

harmonic. The choice of the superspace group implies a decision about which of the 25 

irrep distortions is the primary modulation. Once a superspace group is assumed, the 

superspace symmetry automatically introduces the symmetry properties of each 

harmonic, and a rough hierarchy in their importance is implicitly assumed. The mode 

decomposition, on the other hand, does not assume a priori any predominance among 

the 25 irrep components, and one has to define and indicate explicitly one by one the 

symmetry properties of each possible irrep distortion present in structure. Only the 

actual mode decomposition and the values of the distortion amplitudes for a given 

structure will allow to identify if there exist a primary prevailing distortion. Even if a 

primary distortion has been a priori identified from experimental results, the 

identification of the secondary modes of lowest order among all possible irrep 

distortions, susceptible of having more weight in the total distortion, require non-trivial 

consideration, as shown above. 

Although the structure of GaII, as stressede in REF 73, is clearly very well 

described by the three first modulation harmonics, indicated in Table 19. There are 

some additional distortion amplitudes, which seem to be significant (being clearly larger 

than their standard deviations). It remarkable that even for these smaller components the 

underlying hierarchy for odd harmonics coming from the primary mode is observed; a 

fact that supports the consistency of these smaller components of the reported structural 



model. Thus, as shown in Table 19, the next two irrep distortions with the largest 

amplitudes of 0.16 and 0.12 A can be identified with the 5th and 7th modulation 

harmonic. On the other hand, the secondary modes with n even, except the second 

harmonic, have amplitudes that can be taken as zero, considering their standard 

deviation.

     (PENDIENTE DE CALCULAR CON AMPLIMODES INCLUYENDO 

ERRORES, para modificar texto

8. Mode Analysis in ab-initio calculations. A natural basis of symmetry modes

8.0 SPS

 8.1 SrAl2O4

8.2 Bi4Ti3O4

9. Conclusions



Tables

Table 1. Asymmetric unit of the Amm2 structure of BaTiO3 at 190K  according to 
[REF18], compared with the reference structure Pm-3m parent structure expressed in 
the same setting. The unit cell of this latter is used for translating the atomic 
displacements into absolute values. Note the splitting of the oxygen orbit in the 
orthorhombic space group. The origin of the published Amm2 structure has been shifted 
along z so that the atomic displacements relating both structures do not include a global 
translation.

             Amm2 phase

(a=3.9828, b=5.6745, c=5.6916)

       Pm-3m phase 
(reference structure)

(a=4.006000, b= 5.665339, 
c=5.665339)

Ba   2ª  0.0 0.0 0.00508 

Ti    2b  0.5 0.0 0.5221(5) 

O1   4°  0.5 0.2561(3) 0.2394(4)

O2   2°  0.0 0.0 0.4941(6)

Ba  1a  0.0  0.0  0.0 

Ti   1b  0.5  0.0   0.5   

O    3c   0.5 0.25 0.25

O           0.0  0.0   0.5

Table 2.  Basis of symmetry distortion modes of the parent structure Pm-3m of 
BaTiO3, restricted to the isotropy subgroup Amm2. The atomic displacements 
for the polarization vector of each mode is expressed in relative units with 
respect to the reference unit cell, indicating only the displacements of the 
Amm2 asymmetric unit (see Table 1). Modes are normalized within a primitive 
unit cell of the Amm2 structure. The modes are labelled by their irrep, the atom 
representative of the parent Wyckoff orbit involved in the mode and an 
additional numerical index in the case of the existence of several independent 
modes for the same irrep and the same atom. 

     mode δx δy δz
GM4-,Ba Ba 0.000000 0.000000 0.176512
GM4-, Ti Ti 0.000000 0.000000 0.176512
GM4-,O,1 O1 0.000000 0.062406 0.062406

O2 0.000000 0.000000 0.124813
GM4-,O,2 O1 0.000000 -0.088256 0.088256

O2 0.000000 0.000000 0.000000
GM5-,O O1 0.000000 -0.062406 -0.062406

O2 0.000000 0.000000 0.124813



Table 3. Polarization vector (normalized to 1 A) of the polar GM4- distortion 
mode present in the orthorhombic phase of BaTiO3.  The mode is defined using 
the asymmetric unit of the reference structure and unit cell indicated in Table 1. 
Displacements are expressed in relative units. This polarization vector 
corresponds to the combination of the four GM4- basis vectors described in 
Table 2. with amplitudes 0.17, 0.76, -0.25,  and -0.57 (in the same order as in 
Table 2).

Atom δx δy δz
Ba 0.000

0
0.000
0

0.0308

Ti 0.000
0

0.000
0

0.1339

O1 0.000
0

0.034
9

-0.0665

O2 0.000
0

0.000
0

-0.0317

Table 4.  Summary of the decomposition in symmetry-adapted distortion modes 
with respect to its P-421m parent structure of the Pba2 structure of 
Gd2(MoO4)2  at 190K reported in (Jeitschko 1972).

K-vector Irrep Direction Isotropy
Subgroup Dimension Amplitude (Å)

(0,0,0) GM1 (a) P-42_1m (113) 14 0.15

(0,0,0) GM3 (a) Cmm2 (35) 15 0.07

(1/2,1/2,0) M2M4 (a,b) Pba2 (32) 22 1.62

Global distortion: 1.63 Å

Table 5. Summary of the decomposition in symmetry-adapted distortion modes 
with respect to its P63/mmc parent structure of the P63cm structure of KNiCl3 
(REF48). As reference a symmetrized idealized P63/mmc structure has been 
used (see Table 6).

K-vector Irrep Direction Isotropy
Subgroup Dimension Amplitude (Å)

(0,0,0) GM1
+ (a) P6_3/mmc (194) 1 0.02



(0,0,0) GM2- (a) P6_3mc (186) 3 0.22

(1/3,1/3,0) K1 (a,0) P6_3/mcm (193) 3 0.07

(1/3,1/3,0) K3 (a,0) P6_3cm (185) 2 1.70

Global distortion: 1.72 Å

Table 6: Reference structure for KNiCl3 corresponding to its parent hexagonal 
P63/mmc phase in the P63cm setting of its distorted structure
185
11.795007 11.795007 5.926000 90.000000 90.000000 120.000000 

5

Ni 1 2ª 0.000000 0.000000 0.000000
Ni 1_2 4b 0.666667 0.333333 0.000000
K 1 6c 0.333334 0.000000 0.750000
Cl 1 6c 0.160000 0.000000 0.250000
Cl 1_2 12d 0.826667 0.333333 0.250000

Table  7: Polarization vectors of the K3, K1 and GM2-  distortions present in the 
P63cm structure of KNiCl3. The asymmetric unit is that of Table 6. 
Displacements are given in relative units with respect to the reference unit cell 
(Table 6). Polarization vectors are normalized to 1A.

K3 K1 GM2-

Atom δx δy δz δx δy δz       δx δy δz

Ni1 0.0000 0.0000 -0.0482 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0311

Ni1_2 0.0000 0.0000 0.0241 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0311

K1 0.0000 0.0000 0.0000 0.0288 0.0000 0.0000 0.0000 0.0000 -0.0437

Cl1 0.0000 0.0000 -0.0489 -0.0078 0.0000 0.0000 0.0000 0.0000 0.0249

Cl1_2 0.0000 0.0000 0.0244 -0.0029 -0.0137 0.0000 0.0000 0.0000 0.0249

Table 8: Comparison of the mode decomposition of the P63cm phase of different ABX3 
compounds. The third column indicates the dimension of each distortion subspace. For 
each compound the first column shows the amplitude of each irrep distortion, while the 
second indicates the value of the scalar product of its polarization vector with that of the 
corresponding distortion in KNiCl3. The structural models have been taken from REF 
48 (KNiCl3), REF 55 (TlFeBr3), REF 56 (RbMnBr3), REF 57 (BaMnO3 at 80K), REF 



58 (TlCoCl3).

Isotropy
Subgroup D

KNiCl3 TlFeBr3 RbMnBr3 BaMnO3 TlCoCl3

ampl. prod. ampl. prod. ampl. prod. ampl. prod. ampl. prod.

GM2- P6_3mc (186) 3 0.21
1

0.36
0.98

0.39
0.77

0.14
-0.74

0.16
0.70

0.70 0.53 0.994 -0.997 1

K1 P6_3/mcm 
(193) 3 0.07 1 0.10 0.70 0.02 0.67 0.04 -0.55 0.007 -0.89

K3 P6_3cm (185) 2 1.70 1 1.15 -0.9997 1.72 1.0000 0.42 -0.9999 1.02 0.9999

 

Table 9: Polarization vectors of the K3, K1 and GM2-  distortions present in the 
P63cm structure of TlCoCl3. The asymmetric unit is equivalent to that of Table 
6. Displacements are given in relative units with respect to the experimental unit 
cell (11.86 11.86 5.98). Polarization vectors are normalized to 1A.

(Combinar con Table 7???)

K3 K1 GM2-

Atom δx δy δz δx δy δz δx δy δz

Co1 0.000
0

0.000
0

-
0.0488 0.0000 0.000

0
0.000
0

0.000
0

0.000
0 0.0164

Co1_2 0.000
0

0.000
0 0.0244 0.0000 0.000

0
0.000
0

0.000
0

0.000
0 0.0164

Tl1 0.000
0

0.000
0 0.0000 -

0.0186
0.000
0

0.000
0

0.000
0

0.000
0 -0.0611

Cl1 0.000
0

0.000
0

-
0.0481 0.0047 0.000

0
0.000
0

0.000
0

0.000
0 0.0149

Cl1_2 0.000
0

0.000
0 0.0240 0.0093 0.023

2
0.000
0

0.000
0

0.000
0 0.0149



Table 10: Mode decomposition of the P63 phases of different ABX3 compounds 
compared with mode decomposition of the P63cm phase of KNiCl3. The third column 
indicates the direction of the irrep distortion in the irrep space. For each compound the 
first column shows the amplitude of each irrep distortion, while the second indicates the 
value of the scalar product of its polarization vector with that of the corresponding 
distortion in KNiCl3, if existing. For irrep distortions only present in the P63 
configuration, only thei amplitudes are indicated. The structural models have been taken 
from REF 48 for KNiCl3 and REF 62 for the rest.

wR = 0.10 wR =0.15 wR =0.16

K-vector Irrep dir. Isotropys subgr. Dim KNiCl3 KTiCl3 KTiI3 KTiBr3

(0,0,0) GM2- (a) P6_3mc (186) 3 0.21 1 0.10 -0.9992 0.81 0.65 1.21 -0.63

(1/3,1/3,0) K1 (a,0) P6_3/mcm (193) 3 0.07 1 0.18 0.97 0.54 -0.91 1.09 0.90

(1/3,1/3,0) K3 (a,0) P6_3cm (185) 2 1.70 1 2.11 -1 2.53 0.9999 3.73 0.9997

(0,0,0) GM2+ (a) P6_3/m (176) 1 0 0.74 2.04 1.49

(1/3,1/3,0) K2 (a,0) P6_322 (182) 1 0 0.01 0.02 0.18

(1/3,1/3,0) K4 (a,0) P6_3/m (176) 4 0 0.11 0.76 2.10

Table 11. Summary of the decomposition in symmetry-adapted distortion 
modes with respect to its Pm-3m parent structure of the Pnma structure of 
SrZrO3 (…K , REF29), NaTaO3 (REF …),  and LaMnO3 (300K ,REF 64) .

Irrep Isotropy

Subgroup Dimension Amplitude (Å)

R4+ Imma (74) 1 1.1851

R5+ Imma (74) 2 0.0693

X5+ Cmcm (63) 2 0.3379



M2+ P4/mbm (127)1 0.0070

M3+ P4/mbm (127)1 0.7938

To be done ……….(add wave vectors)   (REDONDEAR A DOS CIFRAS 
DECIMALES)

Combine with the results for NaTaO3:

Summary of Amplitudes

Irrep Isotropy

Subgroup Dimension Amplitude (Å)

R4+ Imma (74) 1 0.9718

R5+ Imma (74) 2 0.0258

X5+ Cmcm (63) 2 0.2295

M2+ P4/mbm (127)1 0.0133

M3+ P4/mbm (127)1 0.7806

and For LaMnO3:

K-vector Irrep Direction Isotropy

Subgroup Dimension Amplitude (Å)

(1/2,1/2,1/2) R4+ (a,a,0) Imma (74) 1 1.1945

(1/2,1/2,1/2) R5+ (-a,a,0)Imma (74) 2 0.0890

(0,1/2,0) X5+ (0,a,0,0,0,0) Cmcm (63) 2 0.5649

(1/2,1/2,0) M2+ (0,0,a) P4/mbm (127)1 0.3595

(1/2,1/2,0) M3+ (0,0,a) P4/mbm (127)1 0.9044

Table 12. Polarization vectors of the five different irrep distortions present in the 
Pnma structure of SrZrO3 at   K. The table shows an asymmetric unit of the 
Pnam structure with the positions corresponding to the parent structure. Then, 
the atomic displacements (in relative units) for the polarization vectors 



(normalized to 1 A) of the different distortion modes are listed for the same 
asymmetric unit, together with their global amplitudes. Atomic displacements 
are expressed in relative units with respect to the corresponding supercell of the 
reported parent phase (a=……,c …....) [REF29]. 

Reference structure:

062

5.870966 8.302800 5.870966 90.000000 90.000000 90.000000 

4

Zr 1 4a 0.000000 0.000000 0.000000

Sr 2 4c 0.500000 0.250000 0.000000

O 3 8d 0.250000 0.000000 0.750000

O 3_2 4c 0.500000 0.750000 0.500000

Mode R4+:

Atom δx δy δz

Zr1 0.0000 0.0000 0.0000

Sr2 0.0000 0.0000 0.0000

O3 0.0000 -0.0301 0.0000

O3_2 0.0000 0.0000 -0.0602

Mode R5+:

Atom δx δy δz

Zr1 0.0000 0.0000 0.0000

Sr2 0.0000 0.0000 0.0851

O3 0.0000 0.0009 -0.0000

O3_2 0.0000 0.0000 -0.0019



Mode X5+:

Atom δx δy δz

Zr1 0.0000 0.0000 0.0000

Sr2 0.0725 -0.0000 -0.0000

O3 0.0000 0.0000 0.0000

O3_2 0.0447 -0.0000 -0.0000

Mode M2+:

Atom δx δy δz

Zr1 0.0000 0.0000 0.0000

Sr2 0.0000 0.0000 0.0000

O3 -0.0426 0.0000 0.0426

O3_2 0.0000 0.0000 0.0000

Mode M3+:

  Atomδx δy δz

Zr1 0.0000 0.0000 0.0000

Sr2 0.0000 0.0000 0.0000

O3 -0.0426 0.0000 -0.0426

O3_2 0.0000 0.0000 0.0000

Table 13: Summary of the mode decomposition of the Cmcm and P4/mbm of NaTaO3

Phase Cmcm NaTaO3  (REDONDEAR VALORES)

R4+ I4/mcm (140) 1 0.4859

R5+ I4/mmm (139)2 0.0419



X5+ Pmma (51) 2 0.1229

M3+ P4/mbm (127)1 0.5404

 

Phase P4/mbm NaTaO3

M3+ P4/mbm (127)  1 0.3790

Table 14 NbS3 

K-vector Irrep Direction Isotropy
Subgroup Dimension Amplitude (Å)

(0,0,0) GM1+ (a) P2_1/m (11) 8 0.00

(0,0,0) GM2+ (a) P-1 (2) 4 0.04

(0,1/2,0) Z1 (0,a) P-1 (2) 12 0.52

Table  15: K2SeO4

K-vector Irrep Direction Isotropy
Subgroup Dimension Amplitude (_)

(0,0,0) GM1
+ (a) Pnma (62) 13 0.12

(0,0,0) GM4- (a) Pna2_1 
(33) 8 0.55

(1/3,0,0) SM2 (a,0) Pna2_1 
(33) 16 1.16

(1/3,0,0) SM3 (a,0) Pnma (62) 26 0.39

Table 16: Summary of the mode decomposition of the ninefold phase of 



thiourea according to the structure reported as model 1 in REF 71 (hydrogen 
atoms not included).

K-vector Irrep Direction Isotropy
Subgroup Dimension Amplitude (_)

(0,0,0) GM1
+ (a) Pnma (62) 7 0.08(1)

(0,1/9,0) DT4 (a,-
5.671a) Pnma (62) 12 1.89(1)

(0,2/9,0) DT1 (a,0.364a) Pnma (62) 12 0.13(1)

(0,1/3,0) DT4 (a,-
1.732a) Pnma (62) 12 0.19(2)

(0,4/9,0) DT1 (a,0.839a) Pnma (62) 12 0.09(2)

Table 17: Polarization vector of the (0,1/9,0) DT4 distortion in the ninefold phase 
of thiourea  according to the structure reported as model 1 in REF 71 (hydrogen 
atoms not included).

Atom δx δy δz

S1 -0.0034 0.0000 -0.0012

S1_2 -0.0098 0.0000 -0.0035

S1_3 -0.0150 0.0000 -0.0054

S1_4 -0.0196 0.0000 -0.0070

S1_5 0.0184 0.0000 0.0066

C1 -0.0012 0.0001 -0.0026

C1_2 -0.0035 -0.0001 -0.0075

C1_3 -0.0054 0.0001 -0.0114

C1_4 -0.0071 0.0000 -0.0149

C1_5 0.0066 0.0000 0.0140

N1 -0.0005 0.0002 -0.0047

N1_2 -0.0010 -0.0002 -0.0107

N1_3 0.0000 0.0002 0.0020

N1_4 -0.0013 0.0001 -0.0155

N1_5 -0.0015 0.0000 -0.0191



N1_6 -0.0010 -0.0001 -0.0138

N1_7 0.0015 -0.0001 0.0184

N1_8 0.0013 0.0001 0.0175

N1_9 0.0005 0.0002 0.0084

Table 18: Summary of the mode decomposition of the ninefold phase of 
thiourea according to the structure reported as model 2 in REF 71 (hydrogen 
atoms not included)

K-vector Irrep Direction Isotropy
Subgroup Dimension Amplitude (_)

(0,0,0) GM1+ (a) Pnma (62) 7 0.07(1)

(0,1/9,0) DT4 (a,5.671a) Pnma (62) 12 1.89(1)

(0,2/9,0) DT1 (a,-0.364a) Pnma (62) 12 0.14(1)

(0,1/3,0) DT4 (a,1.732a) Pnma (62) 12 0.16(2)

(0,4/9,0) DT1 (a,-0.839a) Pnma (62) 12 0.10(2)

Table 19: GaII

Order 
Harm. K-vector Irrep Direction Isotropy

Subgroup Dimension Amplitude (Å)

    23 (0,0,1/13) LD3 (a,0.690a) C222_1 (20) 2 0.11

    3 (0,0,1/13) LD4 (a,0.690a) C222_1 (20) 2 2.14

     6 (0,0,2/13) LD1 (a,2.637a) F222 (22) 1 0.03

    20 (0,0,2/13) LD2 (a,2.637a) Fddd (70) 1 0.03

    17 (0,0,3/13) LD3 (a,-4.057a) C222_1 (20) 2 0.06

     9 (0,0,3/13) LD4 (a,-4.057a) C222_1 (20) 2 0.05

    12 (0,0,4/13) LD1 (a,-0.886a) Fddd (70) 1 0.00

    14 (0,0,4/13) LD2 (a,-0.886a) F222 (22) 1 0.03

    11 (0,0,5/13) LD3 (a,-0.121a) C222_1 (20) 2 0.05



    15 (0,0,5/13) LD4 (a,-0.121a) C222_1 (20) 2 0.11

    18 (0,0,6/13) LD1 (a,0.525a) F222 (22) 1 0.06

     8 (0,0,6/13) LD2 (a,0.525a) Fddd (70) 1 0.01

     5 (0,0,7/13) LD3 (a,1.905a) C222_1 (20) 2 0.16

    21 (0,0,7/13) LD4 (a,1.905a) C222_1 (20) 2 0.11

    24 (0,0,8/13) LD1 (a,-8.236a) Fddd (70) 1 0.03

    2 (0,0,8/13) LD2 (a,-8.236a) F222 (22) 1 0.53

    1 (0,0,9/13) LD3 (a,-1.129a) C222_1 (20) 2 3.59

   25 (0,0,9/13) LD4 (a,-1.129a) C222_1 (20) 2 0.05

   22 (0,0,10/13) LD1 (a,-0.246a) F222 (22) 1 0.02

     4 (0,0,10/13) LD2 (a,-0.246a) Fddd (70) 1 0.00

     7 (0,0,11/13) LD3 (a,0.379a) C222_1 (20) 2 0.12

   19 (0,0,11/13) LD4 (a,0.379a) C222_1 (20) 2 0.05

   16 (0,0,12/13) LD1 (a,1.449a) Fddd (70) 1 0.04

    10 (0,0,12/13) LD2 (a,1.449a) F222 (22) 1 0.01

    13 (0,0,1) Z2 (a,a) C222_1 (20) 2 0.07



Illustration 1: Projection along the x axis of the Amm2 structure of BaTiO3 at 190K,  
according to [REF17].



Illustration 2:  Scheme of the polarization vectors (projected on the plane yz) of the  
distortions GM4-  (a) and GM5-  (b) present in the Amm2 structure of BaTiO3. e figure  
shows in each case the distorted structure for an exaggerated amplitude of the mode. Also  
schematic arrows indicating the atomic displacements are depicted within a single unit  
cell.



Illustration 3: Structure of Gd2(MoO4)2 projected on the xy plane in the parent P-421m 
phase (a),and in the distorted Pba2 phase (b). e smaller tetragonal unit cell of the parent  
phase is indicated in (a).



Illustration 4: Graph of maximal subgroups relating the space groups of the parent and 
distorted phases of Gd2(MoO4). For each subgroup, any irrep distortion compatible with it  
is indicated, together with the dimension of the corresponding distortion subspaces.



Illustration 5: Structure of leucite (KAlSi2O6) projected along one of its trigonal axis in its  
cubic phase. (a) High temperature Ia-3d phase. (b) room-temperature tetragonal I41/a 
phase (REF 27 )



Illustration 6: Graph of maximal subgroups relating the space groups of the parent and 
distorted phases of leucite. For each subgroup, the irrep distortion yielding this symmetry is  
indicated, together with the dimension of the corresponding distortion subspace.



Illustration 7: (a) Temperature dependence of the amplitudes of the primary (GM4+) and 
secondary (GM3+) distortions in leucite, according to the structures reported in REF 27.  
(b) scalar product of the 16- and 10-dimensional normalized polarization vectors of the  
two distortions at each temperature with the corresponding one in the reported structure  
at 4K.



Illustration 8: Graph of maximal subgroups relating the space groups of the parent and 
distorted phases of KNiCl3. For each subgroup, any irrep distortion yielding this symmetry  
is indicated.



Illustration 9: Polarization vector of the distortions corresponding to the irreps K3 (a) and 
GM2- (b) in KNiCl3. e scale of the displacement vectors has been enlarged. (Figure has  
been done using FullProf Studio (REF ….) ) 



Polarization vector of the distortions corresponding to the irreps K3 (a) and GM2- (b) in  
KNiCl3. e scale of the displacement vectors has been enlarged. (Figure has been done  
using FullProf Studio (REF ….) ) 



Illustration 10: Polarization vector of the distortion corresponding to the irrep K1 in  
KNiCl3, in a perpective view (a) and projected on the plane xy (b). e scale of the  
displacement vectors has been enlarged. (Figure has been done using FullProf Studio (REF 
…) ) 



Illustration 11: Graph of maximal subgroups relating the space groups of the parent and 
distorted P63 phase of KTiCl3. For each subgroup, any irrep distortion yielding this  
symmetry is indicated. e two primary distortions evidenced by the mode decomposition  
of the experimental structure are highlighted.



Illustration 12: Polarization vector of the primary distortion GM2+ present in the P63 
structures of KTiCl3, KTiBr3 and KTiI3. (a) perspective view, (b) projection on the plane 
xy. e scale of the displacement vectors has been enlarged. (Figure has been done using  
FullProf Studio (REF …) ) 



Illustration 13: scheme of Pnma SrZrO3 structure



Illustration 14: Subgroup graph of SrZrO3

Illustration 15: Scheme of the five different irrep distortions present in SrZrO3
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